BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 9788368)

  • 1. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.
    Athanasiou KA; Niederauer GG; Agrawal CM
    Biomaterials; 1996 Jan; 17(2):93-102. PubMed ID: 8624401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable materials in arthroscopy.
    Gunja NJ; Athanasiou KA
    Sports Med Arthrosc Rev; 2006 Sep; 14(3):112-9. PubMed ID: 17135957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration.
    Kim EJ; Yoon SJ; Yeo GD; Pai CM; Kang IK
    Biomed Mater; 2009 Oct; 4(5):055001. PubMed ID: 19776491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Should in the treatment of osteochondritis dissecans biodegradable or metallic fixation devices be used? A comparative study in goat knees.
    Wouters DB; Bos RR; van Horn JR; van Luyn MJ
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):154-64. PubMed ID: 17477389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora.
    van der Elst M; Klein CP; de Blieck-Hogervorst JM; Patka P; Haarman HJ
    Biomaterials; 1999 Jan; 20(2):121-8. PubMed ID: 10022781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technique to control pH in vicinity of biodegrading PLA-PGA implants.
    Agrawal CM; Athanasiou KA
    J Biomed Mater Res; 1997; 38(2):105-14. PubMed ID: 9178737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering.
    Moran JM; Pazzano D; Bonassar LJ
    Tissue Eng; 2003 Feb; 9(1):63-70. PubMed ID: 12625955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery.
    Peltoniemi H; Ashammakhi N; Kontio R; Waris T; Salo A; Lindqvist C; Grätz K; Suuronen R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2002 Jul; 94(1):5-14. PubMed ID: 12193886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scanning electron microscopic study of in vitro toxicity of ethylene-oxide-sterilized bone repair materials.
    Zislis T; Martin SA; Cerbas E; Heath JR; Mansfield JL; Hollinger JO
    J Oral Implantol; 1989; 15(1):41-6. PubMed ID: 2561372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable fixation of rabbit osteotomies.
    Vainionpää S; Vihtonen K; Mero M; Pätiälä H; Rokkanen P; Kilpikari J; Törmälä P
    Acta Orthop Scand; 1986 Jun; 57(3):237-9. PubMed ID: 3739665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.
    Tyler B; Gullotti D; Mangraviti A; Utsuki T; Brem H
    Adv Drug Deliv Rev; 2016 Dec; 107():163-175. PubMed ID: 27426411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A novel orthopaedic biodegradable polymer and its biocompatibility].
    Liu J; Qi X; Guan J; Xu X; Chen X; Jing X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):25-9. PubMed ID: 15762108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios.
    Miller RA; Brady JM; Cutright DE
    J Biomed Mater Res; 1977 Sep; 11(5):711-9. PubMed ID: 893490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polylactic acid: synthesis and biomedical applications.
    Singhvi MS; Zinjarde SS; Gokhale DV
    J Appl Microbiol; 2019 Dec; 127(6):1612-1626. PubMed ID: 31021482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of biodegradable self-reinforced polyglycolic acid, poly-DL-lactic acid and stainless-steel spiral stents on uroepithelium after Nd:YAG laser irradiation of the canine prostate.
    Pétas A; Kärkkäinen P; Talja M; Taari K; Laato M; Välimaa T; Törmälä P
    Br J Urol; 1997 Dec; 80(6):903-7. PubMed ID: 9439406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatility of biodegradable biopolymers: degradability and an in vivo application.
    Hasirci V; Lewandrowski K; Gresser JD; Wise DL; Trantolo DJ
    J Biotechnol; 2001 Mar; 86(2):135-50. PubMed ID: 11245902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.