These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9788368)

  • 41. Enhancement of chondrogenic differentiation of human articular chondrocytes by biodegradable polymers.
    Rahman MS; Tsuchiya T
    Tissue Eng; 2001 Dec; 7(6):781-90. PubMed ID: 11749734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Studies on in vivo biocompatibility and biodegradation of absorbable material of polylactic acid].
    Ruan DK
    Zhonghua Wai Ke Za Zhi; 1993 Sep; 31(9):568-70. PubMed ID: 8033728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes.
    Sittinger M; Reitzel D; Dauner M; Hierlemann H; Hammer C; Kastenbauer E; Planck H; Burmester GR; Bujia J
    J Biomed Mater Res; 1996; 33(2):57-63. PubMed ID: 8736023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Poly(lactic acid) blends in biomedical applications.
    Saini P; Arora M; Kumar MNVR
    Adv Drug Deliv Rev; 2016 Dec; 107():47-59. PubMed ID: 27374458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes.
    Puelacher WC; Mooney D; Langer R; Upton J; Vacanti JP; Vacanti CA
    Biomaterials; 1994 Aug; 15(10):774-8. PubMed ID: 7986941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New technique to extend the useful life of a biodegradable cartilage implant.
    Spain TL; Agrawal CM; Athanasiou KA
    Tissue Eng; 1998; 4(4):343-52. PubMed ID: 9916167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers.
    Di Toro R; Betti V; Spampinato S
    Eur J Pharm Sci; 2004 Feb; 21(2-3):161-9. PubMed ID: 14757487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Vivo Degradation Studies of PGA-PLA Block Copolymer and Their Histochemical Analysis for Spinal-Fixing Application.
    Yoon SK; Chung DJ
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An overview of the recent developments in polylactide (PLA) research.
    Madhavan Nampoothiri K; Nair NR; John RP
    Bioresour Technol; 2010 Nov; 101(22):8493-501. PubMed ID: 20630747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Formation of porous biodegradable scaffolds for tissue engineering].
    Hao B; Yin G; She L; Jiang X; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):140-3, 171. PubMed ID: 11951503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New implant designs for bioresorbable devices in orthopaedic surgery.
    Hofmann GO; Wagner FD
    Clin Mater; 1993; 14(3):207-15. PubMed ID: 10146529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioabsorbable plates and screws: Current state of the art in facial fracture repair.
    Suuronen R; Kallela I; Lindqvist C
    J Craniomaxillofac Trauma; 2000; 6(1):19-27; discussion 28-30. PubMed ID: 11373737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells.
    Zhou G; Liu W; Cui L; Wang X; Liu T; Cao Y
    Tissue Eng; 2006 Nov; 12(11):3209-21. PubMed ID: 17518635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tissue engineering of a small hand phalanx with a porously casted polylactic acid-polyglycolic acid copolymer.
    Sedrakyan S; Zhou ZY; Perin L; Leach K; Mooney D; Kim TH
    Tissue Eng; 2006 Sep; 12(9):2675-83. PubMed ID: 16995801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes.
    Lee JW; Kim YH; Park KD; Jee KS; Shin JW; Hahn SB
    Biomaterials; 2004 May; 25(10):1901-9. PubMed ID: 14738854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering smooth muscle tissue with a predefined structure.
    Kim BS; Mooney DJ
    J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GTR treatment of intrabony defects with PLA/PGA copolymer or collagen bioresorbable membranes in combination with deproteinized bovine bone (Bio-Oss).
    Stavropoulos A; Sculean A; Karring T
    Clin Oral Investig; 2004 Dec; 8(4):226-32. PubMed ID: 15583920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.