These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9788427)
1. Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging. Antonuk LE; El-Mohri Y; Huang W; Jee KW; Siewerdsen JH; Maolinbay M; Scarpine VE; Sandler H; Yorkston J Int J Radiat Oncol Biol Phys; 1998 Sep; 42(2):437-54. PubMed ID: 9788427 [TBL] [Abstract][Full Text] [Related]
2. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector. Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Wang Y; Li Y; Du H; Perna L Med Phys; 2006 Apr; 33(4):1053-66. PubMed ID: 16696482 [TBL] [Abstract][Full Text] [Related]
3. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager. El-Mohri Y; Jee KW; Antonuk LE; Maolinbay M; Zhao Q Med Phys; 2001 Dec; 28(12):2538-50. PubMed ID: 11797959 [TBL] [Abstract][Full Text] [Related]
4. Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging. Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Li Y; Su Z; Wang Y; Yamamoto J; Du H; Cunningham I; Klugerman M; Shah K Med Phys; 2005 Oct; 32(10):3067-83. PubMed ID: 16279059 [TBL] [Abstract][Full Text] [Related]
5. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging. Sawant A; Antonuk LE; El-Mohri Y; Li Y; Su Z; Wang Y; Yamamoto J; Zhao Q; Du H; Daniel J; Street R Med Phys; 2005 Feb; 32(2):553-65. PubMed ID: 15789602 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device. Samant SS; Gopal A Med Phys; 2006 Sep; 33(9):3557-67. PubMed ID: 17022252 [TBL] [Abstract][Full Text] [Related]
7. Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation. Antonuk LE; El-Mohri Y; Siewerdsen JH; Yorkston J; Huang W; Scarpine VE; Street RA Med Phys; 1997 Jan; 24(1):51-70. PubMed ID: 9029541 [TBL] [Abstract][Full Text] [Related]
8. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device. Samant SS; Gopal A Med Phys; 2006 Aug; 33(8):2783-91. PubMed ID: 16964854 [TBL] [Abstract][Full Text] [Related]
9. Performance of a high fill factor, indirect detection prototype flat-panel imager for mammography. El-Mohri Y; Antonuk LE; Zhao Q; Wang Y; Li Y; Du H; Sawant A Med Phys; 2007 Jan; 34(1):315-27. PubMed ID: 17278517 [TBL] [Abstract][Full Text] [Related]
10. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology. Siewerdsen JH; Antonuk LE; el-Mohri Y; Yorkston J; Huang W; Cunningham IA Med Phys; 1998 May; 25(5):614-28. PubMed ID: 9608470 [TBL] [Abstract][Full Text] [Related]
11. Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Siewerdsen JH; Antonuk LE; el-Mohri Y; Yorkston J; Huang W; Boudry JM; Cunningham IA Med Phys; 1997 Jan; 24(1):71-89. PubMed ID: 9029542 [TBL] [Abstract][Full Text] [Related]
12. System performance of a prototype flat-panel imager operated under mammographic conditions. Jee KW; Antonuk LE; El-Mohri Y; Zhao Q Med Phys; 2003 Jul; 30(7):1874-90. PubMed ID: 12906206 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Zhao Q; Antonuk LE; El-Mohri Y; Wang Y; Du H; Sawant A; Su Z; Yamamoto J Med Phys; 2010 Jun; 37(6):2738-48. PubMed ID: 20632584 [TBL] [Abstract][Full Text] [Related]
14. Direct-conversion flat-panel imager with avalanche gain: feasibility investigation for HARP-AMFPI. Wronski MM; Rowlands JA Med Phys; 2008 Dec; 35(12):5207-18. PubMed ID: 19175080 [TBL] [Abstract][Full Text] [Related]
15. Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography. Hu YH; Shedlock D; Wang A; Rottmann J; Baturin P; Myronakis M; Huber P; Fueglistaller R; Shi M; Morf D; Star-Lack J; Berbeco RI Med Phys; 2019 Mar; 46(3):1323-1330. PubMed ID: 30586163 [TBL] [Abstract][Full Text] [Related]
16. Toward Scintillator High-Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP-AMFPI): Initial fabrication and characterization. Scheuermann JR; Howansky A; Hansroul M; Léveillé S; Tanioka K; Zhao W Med Phys; 2018 Feb; 45(2):794-802. PubMed ID: 29171067 [TBL] [Abstract][Full Text] [Related]
17. Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager. Liu L; Antonuk LE; El-Mohri Y; Zhao Q; Jiang H Med Phys; 2015 Apr; 42(4):2072-84. PubMed ID: 25832097 [TBL] [Abstract][Full Text] [Related]
18. Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager. Antonuk LE; Yorkston J; Huang W; Sandler H; Siewerdsen JH; el-Mohri Y Int J Radiat Oncol Biol Phys; 1996 Oct; 36(3):661-72. PubMed ID: 8948351 [TBL] [Abstract][Full Text] [Related]
19. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager). Zhao W; Li D; Reznik A; Lui BJ; Hunt DC; Rowlands JA; Ohkawa Y; Tanioka K Med Phys; 2005 Sep; 32(9):2954-66. PubMed ID: 16266110 [TBL] [Abstract][Full Text] [Related]
20. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators. El-Mohri Y; Antonuk LE; Zhao Q; Choroszucha RB; Jiang H; Liu L Phys Med Biol; 2011 Mar; 56(6):1509-27. PubMed ID: 21325709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]