These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9788496)

  • 21. Engineering of cartilage tissue using bioresorbable polymer fleeces and perfusion culture.
    Bujia J; Sittinger M; Minuth WW; Hammer C; Burmester G; Kastenbauer E
    Acta Otolaryngol; 1995 Mar; 115(2):307-10. PubMed ID: 7610828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system.
    Naumann A; Dennis JE; Aigner J; Coticchia J; Arnold J; Berghaus A; Kastenbauer ER; Caplan AI
    Tissue Eng; 2004; 10(11-12):1695-706. PubMed ID: 15684678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits.
    Cohen SB; Meirisch CM; Wilson HA; Diduch DR
    Biomaterials; 2003 Jul; 24(15):2653-60. PubMed ID: 12726719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques.
    Bermueller C; Schwarz S; Elsaesser AF; Sewing J; Baur N; von Bomhard A; Scheithauer M; Notbohm H; Rotter N
    Tissue Eng Part A; 2013 Oct; 19(19-20):2201-14. PubMed ID: 23621795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.
    Schwarz S; Elsaesser AF; Koerber L; Goldberg-Bockhorn E; Seitz AM; Bermueller C; Dürselen L; Ignatius A; Breiter R; Rotter N
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E239-51. PubMed ID: 23193064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable polymer scaffolds for tissue engineering.
    Freed LE; Vunjak-Novakovic G; Biron RJ; Eagles DB; Lesnoy DC; Barlow SK; Langer R
    Biotechnology (N Y); 1994 Jul; 12(7):689-93. PubMed ID: 7764913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.
    Liese J; Marzahn U; El Sayed K; Pruss A; Haisch A; Stoelzel K
    Cell Tissue Bank; 2013 Jun; 14(2):255-66. PubMed ID: 22714645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering.
    Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL
    J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue reactions to engineered cartilage based on poly-L-lactic acid scaffolds.
    Fujihara Y; Asawa Y; Takato T; Hoshi K
    Tissue Eng Part A; 2009 Jul; 15(7):1565-77. PubMed ID: 19115823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers].
    Haisch A; Schultz O; Perka C; Jahnke V; Burmester GR; Sittinger M
    HNO; 1996 Nov; 44(11):624-9. PubMed ID: 9064296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice.
    Wu W; Feng X; Mao T; Feng X; Ouyang HW; Zhao G; Chen F
    Br J Oral Maxillofac Surg; 2007 Jun; 45(4):272-8. PubMed ID: 17097777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of 3D chondrocyte culturing conditions on the formation of extracellular matrix in cartilage tissue-engineering constructs.
    Ponomarev IV; Kochneva LM; Barnewitz D
    Bull Exp Biol Med; 2014 Feb; 156(4):548-55. PubMed ID: 24771447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds.
    Zwingmann J; Mehlhorn AT; Südkamp N; Stark B; Dauner M; Schmal H
    Tissue Eng; 2007 Sep; 13(9):2335-43. PubMed ID: 17691868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.
    Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model.
    Mueller-Rath R; Gavénis K; Gravius S; Andereya S; Mumme T; Schneider U
    Biomed Mater Eng; 2007; 17(6):357-66. PubMed ID: 18032817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage.
    Rotter N; Bonassar LJ; Tobias G; Lebl M; Roy AK; Vacanti CA
    Biomaterials; 2002 Aug; 23(15):3087-94. PubMed ID: 12102179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold.
    Mehlhorn AT; Zwingmann J; Finkenzeller G; Niemeyer P; Dauner M; Stark B; Südkamp NP; Schmal H
    Tissue Eng Part A; 2009 May; 15(5):1159-67. PubMed ID: 19132918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size.
    Conoscenti G; Schneider T; Stoelzel K; Carfì Pavia F; Brucato V; Goegele C; La Carrubba V; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():449-459. PubMed ID: 28866186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.