These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 9788505)
1. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. Gao J; Niklason L; Langer R J Biomed Mater Res; 1998 Dec; 42(3):417-24. PubMed ID: 9788505 [TBL] [Abstract][Full Text] [Related]
2. Engineering smooth muscle tissue with a predefined structure. Kim BS; Mooney DJ J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of poly(glycolic acid) (PGA) for biomedical applications. Lee KB; Yoon KR; Woo SI; Choi IS J Pharm Sci; 2003 May; 92(5):933-7. PubMed ID: 12712412 [TBL] [Abstract][Full Text] [Related]
4. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
5. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908 [TBL] [Abstract][Full Text] [Related]
6. Tissue engineering: a new approach in cardiovascular surgery--seeding of human fibroblasts on resorbable mesh. Hoerstrup SP; Zünd G; Lachat M; Schoeberlein A; Uhlschmid G; Vogt P; Turina M Swiss Surg; 1998; Suppl 2():23-5. PubMed ID: 9757801 [TBL] [Abstract][Full Text] [Related]
7. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Kim BS; Putnam AJ; Kulik TJ; Mooney DJ Biotechnol Bioeng; 1998 Jan; 57(1):46-54. PubMed ID: 10099177 [TBL] [Abstract][Full Text] [Related]
8. Optimal biomaterial for creation of autologous cardiac grafts. Ozawa T; Mickle DA; Weisel RD; Koyama N; Ozawa S; Li RK Circulation; 2002 Sep; 106(12 Suppl 1):I176-82. PubMed ID: 12354729 [TBL] [Abstract][Full Text] [Related]
9. Protein adsorption onto polyester surfaces: is there a need for surface activation? Atthoff B; Hilborn J J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):121-30. PubMed ID: 16680692 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber. Hiraoka Y; Kimura Y; Ueda H; Tabata Y Tissue Eng; 2003 Dec; 9(6):1101-12. PubMed ID: 14670098 [TBL] [Abstract][Full Text] [Related]
11. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Park GE; Pattison MA; Park K; Webster TJ Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802 [TBL] [Abstract][Full Text] [Related]
12. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Hokugo A; Takamoto T; Tabata Y Biomaterials; 2006 Jan; 27(1):61-7. PubMed ID: 16000222 [TBL] [Abstract][Full Text] [Related]
13. Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Zünd G; Hoerstrup SP; Schoeberlein A; Lachat M; Uhlschmid G; Vogt PR; Turina M Eur J Cardiothorac Surg; 1998 Feb; 13(2):160-4. PubMed ID: 9583821 [TBL] [Abstract][Full Text] [Related]
14. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Xu ZC; Zhang WJ; Li H; Cui L; Cen L; Zhou GD; Liu W; Cao Y Biomaterials; 2008 Apr; 29(10):1464-72. PubMed ID: 18155136 [TBL] [Abstract][Full Text] [Related]
15. Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film. Lee KB; Kim DJ; Lee ZW; Woo SI; Choi IS Langmuir; 2004 Mar; 20(7):2531-5. PubMed ID: 15835118 [TBL] [Abstract][Full Text] [Related]
16. Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes. Zund G; Ye Q; Hoerstrup SP; Schoeberlein A; Schmid AC; Grunenfelder J; Vogt P; Turina M Eur J Cardiothorac Surg; 1999 Apr; 15(4):519-24. PubMed ID: 10371132 [TBL] [Abstract][Full Text] [Related]
17. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber. Hosseinkhani H; Inatsugu Y; Hiraoka Y; Inoue S; Tabata Y Tissue Eng; 2005; 11(9-10):1476-88. PubMed ID: 16259602 [TBL] [Abstract][Full Text] [Related]
18. Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model. Lai JY; Chang PY; Lin JN J Pediatr Surg; 2005 Dec; 40(12):1869-73. PubMed ID: 16338308 [TBL] [Abstract][Full Text] [Related]
19. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro]. Wen SJ; Zhao LM; Li P; Li JX; Liu Y; Liu JL; Chen YC Zhonghua Yi Xue Za Zhi; 2005 Mar; 85(12):816-8. PubMed ID: 15949397 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]