These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 9788939)
1. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility. Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939 [TBL] [Abstract][Full Text] [Related]
2. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy. Gilardi G; Mei G; Rosato N; Canters GW; Finazzi-Agrò A Biochemistry; 1994 Feb; 33(6):1425-32. PubMed ID: 8312262 [TBL] [Abstract][Full Text] [Related]
3. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143 [TBL] [Abstract][Full Text] [Related]
4. X-ray crystal structure of the two site-specific mutants Ile7Ser and Phe110Ser of azurin from Pseudomonas aeruginosa. Hammann C; Messerschmidt A; Huber R; Nar H; Gilardi G; Canters GW J Mol Biol; 1996 Jan; 255(3):362-6. PubMed ID: 8568881 [TBL] [Abstract][Full Text] [Related]
5. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence. Hansen JE; Steel DG; Gafni A Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189 [TBL] [Abstract][Full Text] [Related]
6. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics. Moncrieffe MC; Juranic N; Kemple MD; Potter JD; Macura S; Prendergast FG J Mol Biol; 2000 Mar; 297(1):147-63. PubMed ID: 10704313 [TBL] [Abstract][Full Text] [Related]
8. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Petrich JW; Longworth JW; Fleming GR Biochemistry; 1987 May; 26(10):2711-22. PubMed ID: 3111523 [TBL] [Abstract][Full Text] [Related]
9. Disruption of the disulfide bridge in azurin from Pseudomonas aeruginosa. Bonander N; Karlsson BG; Vänngård T Biochim Biophys Acta; 1995 Aug; 1251(1):48-54. PubMed ID: 7647092 [TBL] [Abstract][Full Text] [Related]
10. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins. Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes in azurin from Pseudomona aeruginosa induced through chemical and physical protocols. Fuentes L; Oyola J; Fernández M; Quiñones E Biophys J; 2004 Sep; 87(3):1873-80. PubMed ID: 15345565 [TBL] [Abstract][Full Text] [Related]
12. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin. Bernini C; Andruniów T; Olivucci M; Pogni R; Basosi R; Sinicropi A J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492 [TBL] [Abstract][Full Text] [Related]
13. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant. Tognotti D; Gabellieri E; Morelli E; Cioni P Biophys Chem; 2013 Dec; 182():44-50. PubMed ID: 23816248 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of modified apo-His117Gly and apo-His46Gly mutants of Pseudomonas aeruginosa azurin. Hammann C; van Pouderoyen G; Nar H; Gomis Rüth FX; Messerschmidt A; Huber R; den Blaauwen T; Canters GW J Mol Biol; 1997 Feb; 266(2):357-66. PubMed ID: 9047369 [TBL] [Abstract][Full Text] [Related]
15. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization. Grinvald A; Schlessinger J; Pecht I; Steinberg IZ Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular electron transfer in single-site-mutated azurins. Farver O; Skov LK; Pascher T; Karlsson BG; Nordling M; Lundberg LG; Vänngård T; Pecht I Biochemistry; 1993 Jul; 32(28):7317-22. PubMed ID: 8343521 [TBL] [Abstract][Full Text] [Related]
17. The effect of pressure and guanidine hydrochloride on azurins mutated in the hydrophobic core. Mei G; Di Venere A; Campeggi FM; Gilardi G; Rosato N; De Matteis F; Finazzi-Agrò A Eur J Biochem; 1999 Oct; 265(2):619-26. PubMed ID: 10504393 [TBL] [Abstract][Full Text] [Related]
18. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin. Sakurai T FEBS Lett; 2006 Mar; 580(7):1729-32. PubMed ID: 16500649 [TBL] [Abstract][Full Text] [Related]
19. Effects of chaotropic anions on the distribution of conformational substates of amicyanin, wild type and Cys3Ala/Cys26Ala azurin mutant. Stirpe A; Guzzi R; Verbeet MP; Canters GW; Sportelli L J Inorg Biochem; 2002 Aug; 91(3):463-9. PubMed ID: 12175938 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli. van de Kamp M; Hali FC; Rosato N; Agro AF; Canters GW Biochim Biophys Acta; 1990 Sep; 1019(3):283-92. PubMed ID: 2119806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]