BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9789020)

  • 1. Smooth muscle myosin mutants containing a single tryptophan reveal molecular interactions at the actin-binding interface.
    Yengo CM; Fagnant PM; Chrin L; Rovner AS; Berger CL
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):12944-9. PubMed ID: 9789020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release.
    Yengo CM; Chrin L; Rovner AS; Berger CL
    Biochemistry; 1999 Nov; 38(44):14515-23. PubMed ID: 10545173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle.
    Yengo CM; Chrin LR; Rovner AS; Berger CL
    J Biol Chem; 2000 Aug; 275(33):25481-7. PubMed ID: 10827189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The putative actin-binding role of hydrophobic residues Trp546 and Phe547 in chicken gizzard heavy meromyosin.
    Onishi H; Morales MF; Katoh K; Fujiwara K
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):11965-9. PubMed ID: 8618824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin-induced closure of the actin-binding cleft of smooth muscle myosin.
    Yengo CM; De La Cruz EM; Chrin LR; Gaffney DP; Berger CL
    J Biol Chem; 2002 Jul; 277(27):24114-9. PubMed ID: 11959853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An actin-dependent conformational change in myosin.
    Xiao M; Reifenberger JG; Wells AL; Baldacchino C; Chen LQ; Ge P; Sweeney HL; Selvin PR
    Nat Struct Biol; 2003 May; 10(5):402-8. PubMed ID: 12679807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: the effect of nucleotides and actin.
    Xiao M; Li H; Snyder GE; Cooke R; Yount RG; Selvin PR
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15309-14. PubMed ID: 9860965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique loop contributing to the structure of the ATP-binding cleft of skeletal muscle myosin communicates with the actin-binding site.
    Maruta S; Homma K
    J Biochem; 1998 Sep; 124(3):528-33. PubMed ID: 9722661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of the secondary actin binding site of myosin II.
    Van Dijk J; Furch M; Lafont C; Manstein DJ; Chaussepied P
    Biochemistry; 1999 Nov; 38(46):15078-85. PubMed ID: 10563790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy.
    Yamashita H; Tyska MJ; Warshaw DM; Lowey S; Trybus KM
    J Biol Chem; 2000 Sep; 275(36):28045-52. PubMed ID: 10882745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural rearrangements in the active site of smooth-muscle myosin.
    Robertson CI; Gaffney DP; Chrin LR; Berger CL
    Biophys J; 2005 Sep; 89(3):1882-92. PubMed ID: 15951390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric substitutions of the actin-binding loop activate dephosphorylated but not phosphorylated smooth muscle heavy meromyosin.
    Rovner AS; Freyzon Y; Trybus KM
    J Biol Chem; 1995 Dec; 270(51):30260-3. PubMed ID: 8530442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage at site A, Glu-642 to Ser-643, of the gizzard myosin heavy chain decreases affinity for actin.
    Ikebe M; Mitra S; Hartshorne DJ
    J Biol Chem; 1993 Dec; 268(34):25948-51. PubMed ID: 7902357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state.
    Dominguez R; Freyzon Y; Trybus KM; Cohen C
    Cell; 1998 Sep; 94(5):559-71. PubMed ID: 9741621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis analysis of functionally important domains within the C-terminal end of smooth muscle caldesmon.
    Wang Z; Chacko S
    J Biol Chem; 1996 Oct; 271(41):25707-14. PubMed ID: 8810349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switch I closure simultaneously promotes strong binding to actin and ADP in smooth muscle myosin.
    Decarreau JA; James NG; Chrin LR; Berger CL
    J Biol Chem; 2011 Jun; 286(25):22300-7. PubMed ID: 21536675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chicken-gizzard actin. Interaction with skeletal-muscle myosin.
    Próchniewicz E; Strzelecka-Gołaszewska H
    Eur J Biochem; 1980 May; 106(1):305-12. PubMed ID: 6122569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential light chain modulates phosphorylation-dependent regulation of smooth muscle myosin.
    Katoh T; Konishi K; Yazawa M
    J Biochem; 2002 May; 131(5):641-5. PubMed ID: 11983069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the interaction of myosin with ATP analogues having the syn conformation with respect to the adenine-ribose bond.
    Maruta S; Ohki T; Kambara T; Ikebe M
    Eur J Biochem; 1998 Aug; 256(1):229-37. PubMed ID: 9746368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide dependent intrinsic fluorescence changes of W29 and W36 in smooth muscle myosin.
    van Duffelen M; Chrin LR; Berger CL
    Biophys J; 2004 Sep; 87(3):1767-75. PubMed ID: 15345555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.