These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 9789584)

  • 41. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization.
    Blomqvist G; Gjedde A; Gutniak M; Grill V; Widén L; Stone-Elander S; Hellstrand E
    Eur J Nucl Med; 1991; 18(10):834-7. PubMed ID: 1743207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cerebral glucose transport implies individualized glial cell function.
    Feinendegen LE; Herzog H; Thompson KH
    J Cereb Blood Flow Metab; 2001 Oct; 21(10):1160-70. PubMed ID: 11598493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of reserpine on regional cerebral glucose metabolism in control and migraine subjects.
    Sachs H; Wolf A; Russell JA; Christman DR
    Arch Neurol; 1986 Nov; 43(11):1117-23. PubMed ID: 3490841
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of regional cerebral glucose transport and utilization rates in man with 11C glucose: preliminary results.
    Depresseux JC; Feron A; Peters JM; Del Fiore G; Quaglia L
    Eur Neurol; 1981; 20(3):270-2. PubMed ID: 7262127
    [No Abstract]   [Full Text] [Related]  

  • 45. Production of glucose by the liver during hyperglycaemia.
    STEELE R; MARKS PA
    Nature; 1958 Nov; 182(4647):1444-5. PubMed ID: 13600358
    [No Abstract]   [Full Text] [Related]  

  • 46. The metabolism of variously labelled glucose in fatty livers from mice with congenital hyperglycaemia and obesitas.
    HELLMAN B; LARSSON S; WESTMAN S
    Acta Endocrinol (Copenh); 1962 Mar; 39():457-64. PubMed ID: 13906272
    [No Abstract]   [Full Text] [Related]  

  • 47. The origin of the glucose in the hyperglycaemia induced by pituitrin.
    Clark GA
    J Physiol; 1928 Feb; 64(4):324-30. PubMed ID: 16993923
    [No Abstract]   [Full Text] [Related]  

  • 48. Hyperglycemia selectively increases cerebral non-oxidative glucose consumption without affecting blood flow.
    Blazey T; Lee JJ; Snyder AZ; Goyal MS; Hershey T; Arbeláez AM; Raichle ME
    bioRxiv; 2024 Sep; ():. PubMed ID: 39314314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds.
    Shegani A; Kealey S; Luzi F; Basagni F; Machado JDM; Ekici SD; Ferocino A; Gee AD; Bongarzone S
    Chem Rev; 2023 Jan; 123(1):105-229. PubMed ID: 36399832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.
    Patching SG
    Mol Neurobiol; 2017 Mar; 54(2):1046-1077. PubMed ID: 26801191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Global and regional brain metabolic scaling and its functional consequences.
    Karbowski J
    BMC Biol; 2007 May; 5():18. PubMed ID: 17488526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography.
    Blomqvist G; Seitz RJ; Sjögren I; Halldin C; Stone-Elander S; Widén L; Solin O; Haaparanta M
    Acta Physiol Scand; 1994 May; 151(1):29-43. PubMed ID: 8048334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of hyperglycaemia on regional cerebral glucose oxidation in humans studied with [1-11C]-D-glucose.
    Blomqvist G; Grill V; Ingvar M; Widén L; Stone-Elander S
    Acta Physiol Scand; 1998 Aug; 163(4):403-15. PubMed ID: 9789584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Positron emission tomographic measurements of cerebral glucose utilization using [1-11C]D-glucose.
    Blomqvist G; Stone-Elander S; Halldin C; Roland PE; Widén L; Lindqvist M; Swahn CG; Långström B; Wiesel FA
    J Cereb Blood Flow Metab; 1990 Jul; 10(4):467-83. PubMed ID: 2112135
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3-O-methyl-D-glucose and positron emission tomography.
    Brooks DJ; Gibbs JS; Sharp P; Herold S; Turton DR; Luthra SK; Kohner EM; Bloom SR; Jones T
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):240-4. PubMed ID: 3485643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studied using [11C]3-O-methyl-D-glucose and positron emission tomography.
    Brooks DJ; Beaney RP; Lammertsma AA; Herold S; Turton DR; Luthra SK; Frackowiak RS; Thomas DG; Marshall J; Jones T
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):230-9. PubMed ID: 3007547
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.