BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9789805)

  • 1. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization.
    Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S
    J Physiol Paris; 1998; 92(3-4):183-90. PubMed ID: 9789805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mammalian gene of acetylcholinesterase-associated collagen.
    Krejci E; Thomine S; Boschetti N; Legay C; Sketelj J; Massoulié J
    J Biol Chem; 1997 Sep; 272(36):22840-7. PubMed ID: 9278446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization.
    Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S
    Chem Biol Interact; 1999 May; 119-120():29-42. PubMed ID: 10421436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control of different acetylcholinesterase subunits in formation and maintenance of vertebrate neuromuscular junctions.
    Tsim KW; Xie HQ; Ting AK; Siow NL; Ling KK; Kong LW
    J Mol Neurosci; 2006; 30(1-2):189-92. PubMed ID: 17192673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer.
    Duval N; Krejci E; Grassi J; Coussen F; Massoulié J; Bon S
    EMBO J; 1992 Sep; 11(9):3255-61. PubMed ID: 1380451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA.
    Noureddine H; Carvalho S; Schmitt C; Massoulié J; Bon S
    J Biol Chem; 2008 Jul; 283(30):20722-32. PubMed ID: 18511416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.
    Simon S; Krejci E; Massoulié J
    EMBO J; 1998 Nov; 17(21):6178-87. PubMed ID: 9799227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme.
    Ohno K; Brengman J; Tsujino A; Engel AG
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9654-9. PubMed ID: 9689136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimerization domain of the collagen tail of acetylcholinesterase.
    Bon S; Ayon A; Leroy J; Massoulié J
    Neurochem Res; 2003 Apr; 28(3-4):523-35. PubMed ID: 12675141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tetrameric acetylcholinesterase from the parasitic nematode Dictyocaulus viviparus associates with the vertebrate tail proteins PRiMA and ColQ.
    Pezzementi L; Krejci E; Chatonnet A; Selkirk ME; Matthews JB
    Mol Biochem Parasitol; 2012 Jan; 181(1):40-8. PubMed ID: 22027027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail.
    Bon S; Coussen F; Massoulié J
    J Biol Chem; 1997 Jan; 272(5):3016-21. PubMed ID: 9006950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle.
    Cousin X; Bon S; Massoulié J; Bon C
    J Biol Chem; 1998 Apr; 273(16):9812-20. PubMed ID: 9545320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis.
    Zhang D; McCammon JA
    PLoS Comput Biol; 2005 Nov; 1(6):e62. PubMed ID: 16299589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-terminal t peptide of acetylcholinesterase forms an alpha helix that supports homomeric and heteromeric interactions.
    Bon S; Dufourcq J; Leroy J; Cornut I; Massoulié J
    Eur J Biochem; 2004 Jan; 271(1):33-47. PubMed ID: 14686917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix.
    Dvir H; Harel M; Bon S; Liu WQ; Vidal M; Garbay C; Sussman JL; Massoulié J; Silman I
    EMBO J; 2004 Nov; 23(22):4394-405. PubMed ID: 15526038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion.
    Morel N; Leroy J; Ayon A; Massoulié J; Bon S
    J Biol Chem; 2001 Oct; 276(40):37379-89. PubMed ID: 11443120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S
    Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E; Bernard V; Camp S; Taylor P; Krejci E; Molgó J
    J Mol Neurosci; 2006; 30(1-2):99-100. PubMed ID: 17192646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.