These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 9790671)
1. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism. Saxena A; Viragh C; Frazier DS; Kovach IM; Maxwell DM; Lockridge O; Doctor BP Biochemistry; 1998 Oct; 37(43):15086-96. PubMed ID: 9790671 [TBL] [Abstract][Full Text] [Related]
2. Unique push-pull mechanism of dealkylation in soman-inhibited cholinesterases. Viragh C; Akhmetshin R; Kovach IM; Broomfield C Biochemistry; 1997 Jul; 36(27):8243-52. PubMed ID: 9204869 [TBL] [Abstract][Full Text] [Related]
3. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase. Millard CB; Lockridge O; Broomfield CA Biochemistry; 1998 Jan; 37(1):237-47. PubMed ID: 9425044 [TBL] [Abstract][Full Text] [Related]
4. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301 [TBL] [Abstract][Full Text] [Related]
5. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol. Bosak A; Gazić I; Vinković V; Kovarik Z Arch Biochem Biophys; 2008 Mar; 471(1):72-6. PubMed ID: 18167304 [TBL] [Abstract][Full Text] [Related]
6. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers. Ordentlich A; Barak D; Kronman C; Benschop HP; De Jong LP; Ariel N; Barak R; Segall Y; Velan B; Shafferman A Biochemistry; 1999 Mar; 38(10):3055-66. PubMed ID: 10074358 [TBL] [Abstract][Full Text] [Related]
7. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427 [TBL] [Abstract][Full Text] [Related]
8. Small molecular products of dealkylation in soman-inhibited electric eel acetylcholinesterase. Viragh C; Kovach IM; Pannell L Biochemistry; 1999 Jul; 38(30):9557-61. PubMed ID: 10423232 [TBL] [Abstract][Full Text] [Related]
9. Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry. Li H; Schopfer LM; Nachon F; Froment MT; Masson P; Lockridge O Toxicol Sci; 2007 Nov; 100(1):136-45. PubMed ID: 17698511 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656 [TBL] [Abstract][Full Text] [Related]
11. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase. Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134 [TBL] [Abstract][Full Text] [Related]
12. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. Sanson B; Nachon F; Colletier JP; Froment MT; Toker L; Greenblatt HM; Sussman JL; Ashani Y; Masson P; Silman I; Weik M J Med Chem; 2009 Dec; 52(23):7593-603. PubMed ID: 19642642 [TBL] [Abstract][Full Text] [Related]
13. Structural approach to the aging of phosphylated cholinesterases. Masson P; Nachon F; Lockridge O Chem Biol Interact; 2010 Sep; 187(1-3):157-62. PubMed ID: 20338153 [TBL] [Abstract][Full Text] [Related]
14. Adenovirus-transduced human butyrylcholinesterase in mouse blood functions as a bioscavenger of chemical warfare nerve agents. Chilukuri N; Duysen EG; Parikh K; diTargiani R; Doctor BP; Lockridge O; Saxena A Mol Pharmacol; 2009 Sep; 76(3):612-7. PubMed ID: 19542320 [TBL] [Abstract][Full Text] [Related]
15. Interaction of soman with beta-cyclodextrin. Desire B; Saint-Andre S Fundam Appl Toxicol; 1986 Nov; 7(4):646-57. PubMed ID: 3803759 [TBL] [Abstract][Full Text] [Related]
16. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011 [TBL] [Abstract][Full Text] [Related]
17. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochemistry; 2004 Mar; 43(11):3222-9. PubMed ID: 15023072 [TBL] [Abstract][Full Text] [Related]
18. Stereoselective inhibition of human, mouse, and horse cholinesterases by bambuterol enantiomers. Bosak A; Gazić I; Vinković V; Kovarik Z Chem Biol Interact; 2008 Sep; 175(1-3):192-5. PubMed ID: 18582854 [TBL] [Abstract][Full Text] [Related]
19. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman. Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090 [TBL] [Abstract][Full Text] [Related]
20. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Bartling A; Worek F; Szinicz L; Thiermann H Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]