These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 9790688)
1. pH dependence of the reaction catalyzed by yeast Mg-enolase. Vinarov DA; Nowak T Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688 [TBL] [Abstract][Full Text] [Related]
2. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261 [TBL] [Abstract][Full Text] [Related]
3. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Larsen TM; Wedekind JE; Rayment I; Reed GH Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant. Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525 [TBL] [Abstract][Full Text] [Related]
5. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution. Lebioda L; Stec B Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120 [TBL] [Abstract][Full Text] [Related]
7. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme. Poyner RR; Cleland WW; Reed GH Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770 [TBL] [Abstract][Full Text] [Related]
8. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants. Poyner RR; Laughlin LT; Sowa GA; Reed GH Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301 [TBL] [Abstract][Full Text] [Related]
9. 25Mg NMR studies of yeast enolase and rabbit muscle pyruvate kinase. Lee ME; Nowak T Arch Biochem Biophys; 1992 Mar; 293(2):264-73. PubMed ID: 1311162 [TBL] [Abstract][Full Text] [Related]
10. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Lin J; Cassidy CS; Frey PA Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Zhang E; Brewer JM; Minor W; Carreira LA; Lebioda L Biochemistry; 1997 Oct; 36(41):12526-34. PubMed ID: 9376357 [TBL] [Abstract][Full Text] [Related]
12. Engineering the enolase magnesium II binding site: implications for its evolution. Schreier B; Höcker B Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637 [TBL] [Abstract][Full Text] [Related]
13. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Markham GD; Bock CL; Schalk-Hihi C Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364 [TBL] [Abstract][Full Text] [Related]
14. Metal ion specificity at the catalytic site of yeast enolase. Lee ME; Nowak T Biochemistry; 1992 Feb; 31(7):2172-80. PubMed ID: 1536858 [TBL] [Abstract][Full Text] [Related]
15. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D; Nowak T Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816 [TBL] [Abstract][Full Text] [Related]
16. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
17. Reverse protonation is the key to general acid-base catalysis in enolase. Sims PA; Larsen TM; Poyner RR; Cleland WW; Reed GH Biochemistry; 2003 Jul; 42(27):8298-306. PubMed ID: 12846578 [TBL] [Abstract][Full Text] [Related]
18. Phosphoenolpyruvate mutase catalysis of phosphoryl transfer in phosphoenolpyruvate: kinetics and mechanism of phosphorus-carbon bond formation. Kim J; Dunaway-Mariano D Biochemistry; 1996 Apr; 35(14):4628-35. PubMed ID: 8605214 [TBL] [Abstract][Full Text] [Related]
19. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Poyner RR; Larsen TM; Wong SW; Reed GH Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution. Lebioda L; Stec B; Brewer JM; Tykarska E Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]