These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 9790688)
21. The kinetic behavior of chicken liver sulfite oxidase. Brody MS; Hille R Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486 [TBL] [Abstract][Full Text] [Related]
22. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Qian J; West AH; Cook PF Biochemistry; 2006 Oct; 45(39):12136-43. PubMed ID: 17002313 [TBL] [Abstract][Full Text] [Related]
23. Activation of yeast enolase by Cd(II). Spencer SG; Brewer JM J Inorg Biochem; 1984 Jan; 20(1):39-52. PubMed ID: 6363624 [TBL] [Abstract][Full Text] [Related]
24. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 1. A multidimensional kinetic linked-function analysis. Mesecar AD; Nowak T Biochemistry; 1997 Jun; 36(22):6792-802. PubMed ID: 9184162 [TBL] [Abstract][Full Text] [Related]
25. pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase. Zhou X; Toney MD Biochemistry; 1999 Jan; 38(1):311-20. PubMed ID: 9890912 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
27. Stopped-flow studies of the reaction of D-tartronate semialdehyde-2-phosphate with human neuronal enolase and yeast enolase 1. Brewer JM; McKinnon JS; Phillips RS FEBS Lett; 2010 Mar; 584(5):979-83. PubMed ID: 20102712 [TBL] [Abstract][Full Text] [Related]
28. Role of His159 in yeast enolase catalysis. Vinarov DA; Nowak T Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418 [TBL] [Abstract][Full Text] [Related]
29. Evolution of enzymatic activities in the enolase superfamily: D-tartrate dehydratase from Bradyrhizobium japonicum. Yew WS; Fedorov AA; Fedorov EV; Wood BM; Almo SC; Gerlt JA Biochemistry; 2006 Dec; 45(49):14598-608. PubMed ID: 17144653 [TBL] [Abstract][Full Text] [Related]
30. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
31. pH dependencies of the Tetrahymena ribozyme reveal an unconventional origin of an apparent pKa. Knitt DS; Herschlag D Biochemistry; 1996 Feb; 35(5):1560-70. PubMed ID: 8634287 [TBL] [Abstract][Full Text] [Related]
32. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
33. Calculated effects of the chemical environment of 2-phospho-D-glycerate on the pKa of its carbon-2 and correlations with the proposed mechanism of action of enolase. Hilal SH; Brewer JM; Lebioda L; Carreira LA Biochem Biophys Res Commun; 1995 Jun; 211(2):607-13. PubMed ID: 7794276 [TBL] [Abstract][Full Text] [Related]
34. Influence of pH on the Mn2+ activation of and binding to yeast enolase: a functional study. Lee BH; Nowak T Biochemistry; 1992 Feb; 31(7):2165-71. PubMed ID: 1536857 [TBL] [Abstract][Full Text] [Related]
35. pH-dependence of catalytic constants of the enzyme reaction--some remarks. Barth A; Heins J; Schneeweiss B Pharmazie; 1981; 36(2):120-3. PubMed ID: 7232482 [TBL] [Abstract][Full Text] [Related]
36. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily. Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709 [TBL] [Abstract][Full Text] [Related]
37. Divalent cation and pH dependent primary isotope effects in the enolase reaction. Shen TY; Westhead EW Biochemistry; 1973 Aug; 12(17):3333-7. PubMed ID: 4581789 [No Abstract] [Full Text] [Related]
38. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914 [TBL] [Abstract][Full Text] [Related]
39. pH Dependence of the reaction catalyzed by avian mitochondrial phosphoenolpyruvate carboxykinase. Holyoak T; Nowak T Biochemistry; 2004 Jun; 43(22):7054-65. PubMed ID: 15170343 [TBL] [Abstract][Full Text] [Related]
40. Conformational changes in yeast pyruvate kinase studied by 205Tl+ NMR. Loria JP; Nowak T Biochemistry; 1998 May; 37(19):6967-74. PubMed ID: 9578583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]