These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9790741)

  • 1. Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression.
    Kattan MW; Hess KR; Beck JR
    Comput Biomed Res; 1998 Oct; 31(5):363-73. PubMed ID: 9790741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of gastric cancer survival: using an artificial hierarchical neural network.
    Amiri Z; Mohammad K; Mahmoudi M; Zeraati H; Fotouhi A
    Pak J Biol Sci; 2008 Apr; 11(8):1076-84. PubMed ID: 18819544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of Cox proportional hazards and artificial neural network models for medical prognosis.
    Ohno-Machado L
    Comput Biol Med; 1997 Jan; 27(1):55-65. PubMed ID: 9055046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network analysis to predict mortality in end-stage renal disease: application to United States Renal Data System.
    Jacob AN; Khuder S; Malhotra N; Sodeman T; Gold JP; Malhotra D; Shapiro JI
    Nephron Clin Pract; 2010; 116(2):c148-58. PubMed ID: 20516715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network.
    Katzman JL; Shaham U; Cloninger A; Bates J; Jiang T; Kluger Y
    BMC Med Res Methodol; 2018 Feb; 18(1):24. PubMed ID: 29482517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effect of quantitative and qualitative predictors on gastric cancer individuals survival using hierarchical artificial neural network models.
    Amiri Z; Mohammad K; Mahmoudi M; Parsaeian M; Zeraati H
    Iran Red Crescent Med J; 2013 Jan; 15(1):42-8. PubMed ID: 23486933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of survival data having time-dependent covariates.
    Tsujitani M; Sakon M
    IEEE Trans Neural Netw; 2009 Mar; 20(3):389-94. PubMed ID: 19179250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Cox regression with other methods for determining prediction models and nomograms.
    Kattan MW
    J Urol; 2003 Dec; 170(6 Pt 2):S6-9; discussion S10. PubMed ID: 14610404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning approach for survival prediction for patients with synovial sarcoma.
    Han I; Kim JH; Park H; Kim HS; Seo SW
    Tumour Biol; 2018 Sep; 40(9):1010428318799264. PubMed ID: 30261823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma.
    Jones AS; Taktak AG; Helliwell TR; Fenton JE; Birchall MA; Husband DJ; Fisher AC
    Eur Arch Otorhinolaryngol; 2006 Jun; 263(6):541-7. PubMed ID: 16767468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoring and staging systems using cox linear regression modeling and recursive partitioning.
    Lee JW; Um SH; Lee JB; Mun J; Cho H
    Methods Inf Med; 2006; 45(1):37-43. PubMed ID: 16482368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two computer-based prognostic systems for AIDS.
    Ohno-Machado L; Musen MA
    Proc Annu Symp Comput Appl Med Care; 1995; ():737-41. PubMed ID: 8563387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of censoring on learning Bayesian networks in survival modelling.
    Stajduhar I; Dalbelo-Basić B; Bogunović N
    Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural networks morbidity and mortality modeling during loss of HIV T-cell homeostasis.
    Hatzakis GE; Tsoukas CM
    Proc AMIA Symp; 2002; ():320-4. PubMed ID: 12463839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A technique for using neural network analysis to perform survival analysis of censored data.
    De Laurentiis M; Ravdin PM
    Cancer Lett; 1994 Mar; 77(2-3):127-38. PubMed ID: 8168059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A global goodness-of-fit statistic for Cox regression models.
    Parzen M; Lipsitz SR
    Biometrics; 1999 Jun; 55(2):580-4. PubMed ID: 11318217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms.
    Kalderstam J; Edén P; Ohlsson M
    PLoS One; 2015; 10(9):e0137597. PubMed ID: 26352405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of an artificial neural network to predict head injury outcome.
    Rughani AI; Dumont TM; Lu Z; Bongard J; Horgan MA; Penar PL; Tranmer BI
    J Neurosurg; 2010 Sep; 113(3):585-90. PubMed ID: 20020844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based approach to prognostic analysis of thoracic transplantations.
    Delen D; Oztekin A; Kong ZJ
    Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.