These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9790860)

  • 1. The use of permeabilized cells to investigate secretory granule biogenesis.
    Ling WL; Siddhanta A; Shields D
    Methods; 1998 Oct; 16(2):141-9. PubMed ID: 9790860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network.
    Chen YG; Siddhanta A; Austin CD; Hammond SM; Sung TC; Frohman MA; Morris AJ; Shields D
    J Cell Biol; 1997 Aug; 138(3):495-504. PubMed ID: 9245781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro generation from the trans-Golgi network of coatomer-coated vesicles containing sialylated vesicular stomatitis virus-G protein.
    Simon JP; Ivanov IE; Adesnik M; Sabatini DD
    Methods; 2000 Apr; 20(4):437-54. PubMed ID: 10720465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.
    Ling WL; Shields D
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):723-6. PubMed ID: 8615761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission.
    Sabatini DD; Adesnik M; Ivanov IE; Simon JP
    Biocell; 1996 Dec; 20(3):287-300. PubMed ID: 9031596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.
    Siddhanta A; Shields D
    J Biol Chem; 1998 Jul; 273(29):17995-8. PubMed ID: 9660750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors.
    Austin CD; Shields D
    J Cell Biol; 1996 Dec; 135(6 Pt 1):1471-83. PubMed ID: 8978816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN--phosphoinositides as a common denominator?
    Tüscher O; Lorra C; Bouma B; Wirtz KW; Huttner WB
    FEBS Lett; 1997 Dec; 419(2-3):271-5. PubMed ID: 9428649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of multiple subunits of heterotrimeric G proteins on the membrane of secretory granules in rat prolactin anterior pituitary cells.
    Muller L; Picart R; Barret A; Bockaert J; Homburger V; Tougard C
    Mol Cell Neurosci; 1994 Dec; 5(6):556-66. PubMed ID: 7704429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of Arf1 to the secretory granules in rat parotid acinar cells.
    Dohke Y; Hara-Yokoyama M; Fujita-Yoshigaki J; Kahn RA; Kanaho Y; Hashimoto S; Sugiya H; Furuyama S
    Arch Biochem Biophys; 1998 Sep; 357(1):147-54. PubMed ID: 9721194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-ribosylation factor-1 stimulates formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells.
    Chen YG; Shields D
    J Biol Chem; 1996 Mar; 271(10):5297-300. PubMed ID: 8621377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane modification during secretory granule formation in rat somatotrophs.
    Komuro M; Kiuchi Y; Shioda T
    Eur J Cell Biol; 1987 Feb; 43(1):98-103. PubMed ID: 3569306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for ADP-ribosylation factor 1, but not COP I, in secretory vesicle biogenesis from the trans-Golgi network.
    Barr FA; Huttner WB
    FEBS Lett; 1996 Apr; 384(1):65-70. PubMed ID: 8797805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for phosphatidylinositol transfer protein in secretory vesicle formation.
    Ohashi M; Jan de Vries K; Frank R; Snoek G; Bankaitis V; Wirtz K; Huttner WB
    Nature; 1995 Oct; 377(6549):544-7. PubMed ID: 7566155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein sorting and secretory granule formation in prolactin-producing cells in the anterior pituitary.
    Ozawa H
    Kaibogaku Zasshi; 1997 Feb; 72(1):13-24. PubMed ID: 9086725
    [No Abstract]   [Full Text] [Related]  

  • 17. Protein targeting to dense-core secretory granules.
    Chidgey MA
    Bioessays; 1993 May; 15(5):317-21. PubMed ID: 8343142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-ribosylation factors in rat parotid acinar cells.
    Dohke Y; Hara-Yokoyama M; Fujita-Yoshigaki J; Furuyama S; Sugiya H
    Eur J Morphol; 1998 Aug; 36 Suppl():186-9. PubMed ID: 9825919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic.
    Cockcroft S
    Bioessays; 1998 May; 20(5):423-32. PubMed ID: 9670815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP ribosylation factor and a 14-kD polypeptide are associated with heparan sulfate-carrying post-trans-Golgi network secretory vesicles in rat hepatocytes.
    Nickel W; Huber LA; Kahn RA; Kipper N; Barthel A; Fasshauer D; Söling HD
    J Cell Biol; 1994 May; 125(4):721-32. PubMed ID: 8188742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.