BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9791102)

  • 1. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
    Metcalf WW; Wolfe RS
    J Bacteriol; 1998 Nov; 180(21):5547-58. PubMed ID: 9791102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM; Metcalf WW
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and biochemical characterization of hypophosphite/2-oxoglutarate dioxygenase. A novel phosphorus-oxidizing enzyme from Psuedomonas stutzeri WM88.
    White AK; Metcalf WW
    J Biol Chem; 2002 Oct; 277(41):38262-71. PubMed ID: 12161433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon.
    White AK; Metcalf WW
    J Bacteriol; 2004 Sep; 186(17):5876-82. PubMed ID: 15317793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88.
    Costas AM; White AK; Metcalf WW
    J Biol Chem; 2001 May; 276(20):17429-36. PubMed ID: 11278981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters.
    Bisson C; Adams NBP; Stevenson B; Brindley AA; Polyviou D; Bibby TS; Baker PJ; Hunter CN; Hitchcock A
    Nat Commun; 2017 Nov; 8(1):1746. PubMed ID: 29170493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process.
    Liu P; Li C; Liang X; Xu J; Lu G; Ji F
    Environ Technol; 2013; 34(13-16):2231-9. PubMed ID: 24350477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene.
    Cuypers H; Zumft WG
    J Bacteriol; 1993 Nov; 175(22):7236-46. PubMed ID: 8226670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite.
    Hirota R; Abe K; Katsuura ZI; Noguchi R; Moribe S; Motomura K; Ishida T; Alexandrov M; Funabashi H; Ikeda T; Kuroda A
    Sci Rep; 2017 Mar; 7():44748. PubMed ID: 28317852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most probable number quantification of hypophosphite and phosphite oxidizing bacteria in natural aquatic and terrestrial environments.
    Stone BL; White AK
    Arch Microbiol; 2012 Mar; 194(3):223-8. PubMed ID: 22134432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand.
    Adams NBP; Robertson AJ; Hunter CN; Hitchcock A; Bisson C
    Sci Rep; 2019 Jul; 9(1):10231. PubMed ID: 31308436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the role of Arg301 identified in the X-ray structure of phosphite dehydrogenase.
    Hung JE; Fogle EJ; Christman HD; Johannes TW; Zhao H; Metcalf WW; van der Donk WA
    Biochemistry; 2012 May; 51(21):4254-62. PubMed ID: 22564138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorometric assay for high-throughput phosphite quantitation in biological and environmental matrices.
    Bailey CA; Greene BL
    Analyst; 2023 Jul; 148(15):3650-3658. PubMed ID: 37424451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and heterologous expression of genes involved in anaerobic dissimilatory phosphite oxidation by Desulfotignum phosphitoxidans.
    Simeonova DD; Wilson MM; Metcalf WW; Schink B
    J Bacteriol; 2010 Oct; 192(19):5237-44. PubMed ID: 20622064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter.
    Jeffrey WH; Cuskey SM; Chapman PJ; Resnick S; Olsen RH
    J Bacteriol; 1992 Aug; 174(15):4986-96. PubMed ID: 1629155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii.
    Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA
    Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC.
    Sepúlveda-Torre L; Huang A; Kim H; Criddle CS
    J Mol Microbiol Biotechnol; 2002 Mar; 4(2):151-61. PubMed ID: 11873910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and functional characterization of a recA analog from Pseudomonas stutzeri and construction of a P. stutzeri recA mutant.
    Vosman B; Hellingwerf KJ
    Antonie Van Leeuwenhoek; 1991 Feb; 59(2):115-23. PubMed ID: 1854185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic utilization of phosphite and hypophosphite by Bacillus sp.
    Foster TL; Winans L; Helms SJ
    Appl Environ Microbiol; 1978 May; 35(5):937-44. PubMed ID: 26310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.