These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 9791119)
1. The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. Svetlov VV; Cooper TG J Bacteriol; 1998 Nov; 180(21):5682-8. PubMed ID: 9791119 [TBL] [Abstract][Full Text] [Related]
2. Green fluorescent protein-Dal80p illuminates up to 16 distinct foci that colocalize with and exhibit the same behavior as chromosomal DNA proceeding through the cell cycle of Saccharomyces cerevisiae. Distler M; Kulkarni A; Rai R; Cooper TG J Bacteriol; 2001 Aug; 183(15):4636-42. PubMed ID: 11443099 [TBL] [Abstract][Full Text] [Related]
3. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids. Svetlov V; Cooper TG J Bacteriol; 1997 Dec; 179(24):7644-52. PubMed ID: 9401021 [TBL] [Abstract][Full Text] [Related]
4. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. Coffman JA; Rai R; Loprete DM; Cunningham T; Svetlov V; Cooper TG J Bacteriol; 1997 Jun; 179(11):3416-29. PubMed ID: 9171383 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. Cunningham TS; Andhare R; Cooper TG J Biol Chem; 2000 May; 275(19):14408-14. PubMed ID: 10799523 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. Coffman JA; Cooper TG J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023 [TBL] [Abstract][Full Text] [Related]
7. The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. Cunningham TS; Rai R; Cooper TG J Bacteriol; 2000 Dec; 182(23):6584-91. PubMed ID: 11073899 [TBL] [Abstract][Full Text] [Related]
8. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in Wei T; Jiao Z; Hu J; Lou H; Chen Q Molecules; 2020 Aug; 25(16):. PubMed ID: 32781689 [TBL] [Abstract][Full Text] [Related]
9. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. Coffman JA; Rai R; Cooper TG J Bacteriol; 1995 Dec; 177(23):6910-8. PubMed ID: 7592485 [TBL] [Abstract][Full Text] [Related]
10. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia. van der Merwe GK; Cooper TG; van Vuuren HJ J Biol Chem; 2001 Aug; 276(31):28659-66. PubMed ID: 11356843 [TBL] [Abstract][Full Text] [Related]
11. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae. Oliveira EM; Martins AS; Carvajal E; Bon EP Yeast; 2003 Jan; 20(1):31-7. PubMed ID: 12489124 [TBL] [Abstract][Full Text] [Related]
12. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. Kulkarni AA; Abul-Hamd AT; Rai R; El Berry H; Cooper TG J Biol Chem; 2001 Aug; 276(34):32136-44. PubMed ID: 11408486 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. Cox KH; Rai R; Distler M; Daugherty JR; Coffman JA; Cooper TG J Biol Chem; 2000 Jun; 275(23):17611-8. PubMed ID: 10748041 [TBL] [Abstract][Full Text] [Related]
14. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Coffman JA; Rai R; Cunningham T; Svetlov V; Cooper TG Mol Cell Biol; 1996 Mar; 16(3):847-58. PubMed ID: 8622686 [TBL] [Abstract][Full Text] [Related]
15. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. André B; Talibi D; Soussi Boudekou S; Hein C; Vissers S; Coornaert D Nucleic Acids Res; 1995 Feb; 23(4):558-64. PubMed ID: 7899075 [TBL] [Abstract][Full Text] [Related]
16. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. Scott S; Abul-Hamd AT; Cooper TG J Biol Chem; 2000 Oct; 275(40):30886-93. PubMed ID: 10906145 [TBL] [Abstract][Full Text] [Related]
17. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Soussi-Boudekou S; Vissers S; Urrestarazu A; Jauniaux JC; André B Mol Microbiol; 1997 Mar; 23(6):1157-68. PubMed ID: 9106207 [TBL] [Abstract][Full Text] [Related]
18. Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Cunningham TS; Cooper TG Mol Cell Biol; 1991 Dec; 11(12):6205-15. PubMed ID: 1944286 [TBL] [Abstract][Full Text] [Related]
19. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae. Oliveira EM; Mansure JJ; Bon EP FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659 [TBL] [Abstract][Full Text] [Related]
20. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Coornaert D; Vissers S; André B; Grenson M Curr Genet; 1992 Apr; 21(4-5):301-7. PubMed ID: 1525858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]