BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9791127)

  • 1. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization.
    Gage DJ; Long SR
    J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    FEMS Microbiol Lett; 2000 Jul; 188(1):23-7. PubMed ID: 10867229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance.
    Barnett MJ; Swanson JA; Long SR
    Genetics; 1998 Jan; 148(1):19-32. PubMed ID: 9475718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3.
    Barnett MJ; Long SR
    J Bacteriol; 2015 May; 197(10):1792-806. PubMed ID: 25777671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti.
    Barnett MJ; Rushing BG; Fisher RF; Long SR
    J Bacteriol; 1996 Apr; 178(7):1782-7. PubMed ID: 8606148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of syrM and nodD3 in Rhizobium meliloti.
    Swanson JA; Mulligan JT; Long SR
    Genetics; 1993 Jun; 134(2):435-44. PubMed ID: 8325480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport system for alpha-glucosides.
    Willis LB; Walker GC
    J Bacteriol; 1999 Jul; 181(14):4176-84. PubMed ID: 10400573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a gene on Rhizobium meliloti pSyma, syrB, that negatively affects syrM expression.
    Barnett MJ; Long SR
    Mol Plant Microbe Interact; 1997 Jul; 10(5):550-9. PubMed ID: 9204561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors N-acylated by (omega-1)-hydroxylated fatty acids.
    Demont N; Ardourel M; Maillet F; Promé D; Ferro M; Promé JC; Dénarié J
    EMBO J; 1994 May; 13(9):2139-49. PubMed ID: 8187767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD.
    Ogawa J; Long SR
    Genes Dev; 1995 Mar; 9(6):714-29. PubMed ID: 7729688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of Rhizobium meliloti bacA-phoA fusion results in identification of degP: two loci required for symbiosis are closely linked to degP.
    Glazebrook J; Ichige A; Walker GC
    J Bacteriol; 1996 Feb; 178(3):745-52. PubMed ID: 8550509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Sinorhizobium meliloti nutrient-deprivation-induced tyrosine degradation gene hmgA is controlled by a novel member of the arsR family of regulatory genes.
    Milcamps A; Struffi P; de Bruijn FJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2641-8. PubMed ID: 11375175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.
    Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ
    Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 17. The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa.
    Jiménez-Zurdo JI; García-Rodríguez FM; Toro N
    Mol Microbiol; 1997 Jan; 23(1):85-93. PubMed ID: 9004223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis.
    Keating DH
    J Bacteriol; 2007 Mar; 189(6):2510-20. PubMed ID: 17209018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development.
    Glazebrook J; Ichige A; Walker GC
    Genes Dev; 1993 Aug; 7(8):1485-97. PubMed ID: 8393417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.
    Labes M; Rastogi V; Watson R; Finan TM
    J Bacteriol; 1993 May; 175(9):2662-73. PubMed ID: 8478331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.