These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9791932)

  • 1. From twitch to tetanus for human muscle: experimental data and model predictions for m. triceps surae.
    van Zandwijk JP; Bobbert MF; Harlaar J; Hof AL
    Biol Cybern; 1998 Aug; 79(2):121-30. PubMed ID: 9791932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces.
    van Zandwijk JP; Bobbert MF; Baan GC; Huijing PA
    Biol Cybern; 1996 Nov; 75(5):409-17. PubMed ID: 8983162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantar flexion torque as a function of time of day.
    Guette M; Gondin J; Martin A; PĂ©rot C; Van Hoecke J
    Int J Sports Med; 2006 Mar; 27(3):171-7. PubMed ID: 16541370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromechanical properties of the triceps surae in young and older adults.
    Barber LA; Barrett RS; Gillett JG; Cresswell AG; Lichtwark GA
    Exp Gerontol; 2013 Nov; 48(11):1147-55. PubMed ID: 23886750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae.
    Klass M; Guissard N; Duchateau J
    J Appl Physiol (1985); 2004 Apr; 96(4):1516-21; discussion. PubMed ID: 14607852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors.
    Trajano GS; Seitz L; Nosaka K; Blazevich AJ
    J Appl Physiol (1985); 2013 Jul; 115(2):212-8. PubMed ID: 23661620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of mechanical output of the human M. triceps surae on the basis of electromyographic signals: the role of stimulation dynamics.
    van Zandwijk JP; Bobbert MF; Harlaar J
    J Biomech Eng; 2000 Aug; 122(4):380-6. PubMed ID: 11036561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 120 days of bed-rest with and without countermeasures on the mechanical properties of the triceps surae muscle in young women.
    Koryak Y
    Eur J Appl Physiol Occup Physiol; 1998 Jul; 78(2):128-35. PubMed ID: 9694311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isokinetic plantar flexion: experimental results and model calculations.
    Bobbert MF; van Ingen Schenau GJ
    J Biomech; 1990; 23(2):105-19. PubMed ID: 2312517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of summation of individual twitches into unfused tetanus for various types of rat motor units.
    Raikova R; Celichowski J; Pogrzebna M; Aladjov H; Krutki P
    J Electromyogr Kinesiol; 2007 Apr; 17(2):121-30. PubMed ID: 16531070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bed rest induces neural and contractile adaptations in triceps surae.
    Duchateau J
    Med Sci Sports Exerc; 1995 Dec; 27(12):1581-9. PubMed ID: 8614311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuromuscular responses of the triceps surae muscle to prolonged passive stretch of the foot extensor muscles under conditions of simulated microgravity].
    Koriak IuA
    Fiziol Zh (1994); 2010; 56(5):62-76. PubMed ID: 21265081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of muscle model parameter scaling for isometric plantar flexion torque prediction.
    Menegaldo LL; de Oliveira LF
    J Biomech; 2009 Nov; 42(15):2597-601. PubMed ID: 19665714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of long-term simulated microgravity on neuromuscular performance in men and women.
    Koryak Y
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):168-75. PubMed ID: 10029338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "DRY" immersion induces neural and contractile adaptations in the human triceps surae muscle.
    Koryak Y
    Environ Med; 2002 Dec; 46(1-2):17-27. PubMed ID: 12666668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae.
    Bergquist AJ; Clair JM; Collins DF
    J Appl Physiol (1985); 2011 Mar; 110(3):627-37. PubMed ID: 21183628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation.
    Baldwin ER; Klakowicz PM; Collins DF
    J Appl Physiol (1985); 2006 Jul; 101(1):228-40. PubMed ID: 16627680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of number of stimuli and timing of twitch application on variability in interpolated twitch torque.
    Suter E; Herzog W
    J Appl Physiol (1985); 2001 Mar; 90(3):1036-40. PubMed ID: 11181617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the parameters of a human triceps surae muscle model on the isometric torque-angle relationship.
    Out L; Vrijkotte TG; van Soest AJ; Bobbert MF
    J Biomech Eng; 1996 Feb; 118(1):17-25. PubMed ID: 8833070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.