These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9792110)

  • 21. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states.
    Vidugiris GJ; Royer CA
    Biophys J; 1998 Jul; 75(1):463-70. PubMed ID: 9649407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kinetic basis for the stabilization of staphylococcal nuclease by xylose.
    Frye KJ; Royer CA
    Protein Sci; 1997 Apr; 6(4):789-93. PubMed ID: 9098888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing force-induced unfolding intermediates of a single staphylococcal nuclease molecule and the effect of ligand binding.
    Ishii T; Murayama Y; Katano A; Maki K; Kuwajima K; Sano M
    Biochem Biophys Res Commun; 2008 Oct; 375(4):586-91. PubMed ID: 18755146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mannosylglycerate stabilizes staphylococcal nuclease with restriction of slow β-sheet motions.
    Pais TM; Lamosa P; Matzapetakis M; Turner DL; Santos H
    Protein Sci; 2012 Aug; 21(8):1126-37. PubMed ID: 22619184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the temperature-pressure phase diagram of staphylococcal nuclease.
    Panick G; Vidugiris GJ; Malessa R; Rapp G; Winter R; Royer CA
    Biochemistry; 1999 Mar; 38(13):4157-64. PubMed ID: 10194332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry.
    Faria TQ; Lima JC; Bastos M; Maçanita AL; Santos H
    J Biol Chem; 2004 Nov; 279(47):48680-91. PubMed ID: 15347691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of the C-terminal loop L137-S141 for the folding and folding stability of staphylococcal nuclease.
    Wang M; Feng Y; Yao H; Wang J
    Biochemistry; 2010 May; 49(20):4318-26. PubMed ID: 20415411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the physical determinants of thermal expansion of folded proteins.
    Dellarole M; Kobayashi K; Rouget JB; Caro JA; Roche J; Islam MM; Garcia-Moreno E B; Kuroda Y; Royer CA
    J Phys Chem B; 2013 Oct; 117(42):12742-9. PubMed ID: 23646824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic folding and unfolding of staphylococcal nuclease and its six mutants studied by stopped-flow circular dichroism.
    Kalnin NN; Kuwajima K
    Proteins; 1995 Oct; 23(2):163-76. PubMed ID: 8592698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing.
    Maki K; Cheng H; Dolgikh DA; Shastry MC; Roder H
    J Mol Biol; 2004 Apr; 338(2):383-400. PubMed ID: 15066439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volumetric and spectroscopic characterizations of the native and acid-induced denatured states of staphylococcal nuclease.
    Filfil R; Chalikian TV
    J Mol Biol; 2000 Jun; 299(3):827-42. PubMed ID: 10835287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pressure-induced protein-folding/unfolding kinetics.
    Hillson N; Onuchic JN; García AE
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14848-53. PubMed ID: 10611301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of protein cavities on unfolding volume change and on internal dynamics under pressure.
    Cioni P
    Biophys J; 2006 Nov; 91(9):3390-6. PubMed ID: 17038664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring volume, compressibility and hydration changes of folded proteins upon compression.
    Voloshin VP; Medvedev NN; Smolin N; Geiger A; Winter R
    Phys Chem Chem Phys; 2015 Apr; 17(13):8499-508. PubMed ID: 25685984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations.
    Roche J; Dellarole M; Caro JA; Guca E; Norberto DR; Yang Y; Garcia AE; Roumestand C; García-Moreno B; Royer CA
    Biochemistry; 2012 Nov; 51(47):9535-46. PubMed ID: 23116341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.