These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 9792634)
1. Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. Lo B; Silverman M J Biol Chem; 1998 Nov; 273(45):29341-51. PubMed ID: 9792634 [TBL] [Abstract][Full Text] [Related]
2. A glutamine to glutamate mutation at position 170 (Q170E) in the rabbit Na+/glucose cotransporter, rSGLT1, enhances binding affinity for Na+. Huntley SA; Krofchick D; Silverman M Biochemistry; 2006 Apr; 45(14):4653-63. PubMed ID: 16584200 [TBL] [Abstract][Full Text] [Related]
3. Replacement of Ala-166 with cysteine in the high affinity rabbit sodium/glucose transporter alters transport kinetics and allows methanethiosulfonate ethylamine to inhibit transporter function. Lo B; Silverman M J Biol Chem; 1998 Jan; 273(2):903-9. PubMed ID: 9422748 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. Panayotova-Heiermann M; Loo DD; Wright EM J Biol Chem; 1995 Nov; 270(45):27099-105. PubMed ID: 7592962 [TBL] [Abstract][Full Text] [Related]
5. Sodium/D-glucose cotransporter charge movements involve polar residues. Panayotova-Heiermann M; Loo DD; Lostao MP; Wright EM J Biol Chem; 1994 Aug; 269(33):21016-20. PubMed ID: 8063719 [TBL] [Abstract][Full Text] [Related]
6. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454. Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411 [TBL] [Abstract][Full Text] [Related]
7. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
8. Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). Hazama A; Loo DD; Wright EM J Membr Biol; 1997 Jan; 155(2):175-86. PubMed ID: 9049111 [TBL] [Abstract][Full Text] [Related]
9. Functional studies of the rabbit intestinal Na+/glucose carrier (SGLT1) expressed in COS-7 cells: evaluation of the mutant A166C indicates this region is important for Na+-activation of the carrier. Vayro S; Lo B; Silverman M Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):119-25. PubMed ID: 9576859 [TBL] [Abstract][Full Text] [Related]
10. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. Parent L; Supplisson S; Loo DD; Wright EM J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the involvement of Ala 166 in coupling Na(+) to sugar transport through the human Na(+)/glucose cotransporter. Meinild AK; Loo DD; Hirayama BA; Gallardo E; Wright EM Biochemistry; 2001 Oct; 40(39):11897-904. PubMed ID: 11570890 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647 [TBL] [Abstract][Full Text] [Related]
13. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. Mackenzie B; Loo DD; Wright EM J Membr Biol; 1998 Mar; 162(2):101-6. PubMed ID: 9538503 [TBL] [Abstract][Full Text] [Related]
14. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. Mackenzie B; Loo DD; Panayotova-Heiermann M; Wright EM J Biol Chem; 1996 Dec; 271(51):32678-83. PubMed ID: 8955098 [TBL] [Abstract][Full Text] [Related]
15. 'Active' sugar transport in eukaryotes. Wright EM; Loo DD; Panayotova-Heiermann M; Lostao MP; Hirayama BH; Mackenzie B; Boorer K; Zampighi G J Exp Biol; 1994 Nov; 196():197-212. PubMed ID: 7823022 [TBL] [Abstract][Full Text] [Related]
16. Conformational changes couple Na+ and glucose transport. Loo DD; Hirayama BA; Gallardo EM; Lam JT; Turk E; Wright EM Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7789-94. PubMed ID: 9636229 [TBL] [Abstract][Full Text] [Related]
17. Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1). Sauer GA; Nagel G; Koepsell H; Bamberg E; Hartung K FEBS Lett; 2000 Mar; 469(1):98-100. PubMed ID: 10708764 [TBL] [Abstract][Full Text] [Related]
18. Functional studies of a chimeric protein containing portions of the Na(+)/glucose and Na(+)/myo-inositol cotransporters. Coady MJ; Jalal F; Bissonnette P; Cartier M; Wallendorff B; Lemay G; Lapointe J Biochim Biophys Acta; 2000 Jun; 1466(1-2):139-50. PubMed ID: 10825438 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of the reverse mode of the Na+/glucose cotransporter. Eskandari S; Wright EM; Loo DD J Membr Biol; 2005 Mar; 204(1):23-32. PubMed ID: 16007500 [TBL] [Abstract][Full Text] [Related]
20. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]