BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9792640)

  • 1. A regional net charge and structural compensation model to explain how negatively charged amino acids can be accepted within a mitochondrial leader sequence.
    Heard TS; Weiner H
    J Biol Chem; 1998 Nov; 273(45):29389-93. PubMed ID: 9792640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldehyde dehydrogenase.
    Thornton K; Wang Y; Weiner H; Gorenstein DG
    J Biol Chem; 1993 Sep; 268(26):19906-14. PubMed ID: 8366128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo mitochondrial import. A comparison of leader sequence charge and structural relationships with the in vitro model resulting in evidence for co-translational import.
    Ni L; Heard TS; Weiner H
    J Biol Chem; 1999 Apr; 274(18):12685-91. PubMed ID: 10212250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of positive charges and structural segments in the presequence of rat liver aldehyde dehydrogenase in import into mitochondria.
    Hammen PK; Waltner M; Hahnemann B; Heard TS; Weiner H
    J Biol Chem; 1996 Aug; 271(35):21041-8. PubMed ID: 8702869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space.
    Mukhopadhyay A; Heard TS; Wen X; Hammen PK; Weiner H
    J Biol Chem; 2003 Apr; 278(16):13712-8. PubMed ID: 12551941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presequence of rat liver aldehyde dehydrogenase requires the presence of an alpha-helix at its N-terminal region which is stabilized by the helix at its C termini.
    Wang Y; Weiner H
    J Biol Chem; 1993 Mar; 268(7):4759-65. PubMed ID: 8383124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electrostatic and hydrophobic effects on the interaction of mitochondrial signal sequences with phospholipid bilayers.
    Wang Y; Weiner H
    Biochemistry; 1994 Nov; 33(43):12860-7. PubMed ID: 7947692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial leader sequences: structural similarities and sequence differences.
    Hammen PK; Weiner H
    J Exp Zool; 1998 Sep-Oct 1; 282(1-2):280-3. PubMed ID: 9723185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces.
    Hammen PK; Gorenstein DG; Weiner H
    Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of mitochondrial leader sequences to Tom20 assessed using a bacterial two-hybrid system shows that hydrophobic interactions are essential and that some mutated leaders that do not bind Tom20 can still be imported.
    Mukhopadhyay A; Yang CS; Weiner H
    Protein Sci; 2006 Dec; 15(12):2739-48. PubMed ID: 17088320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the mature portion of a precursor protein on the mitochondrial signal sequence.
    Waltner M; Hammen PK; Weiner H
    J Biol Chem; 1996 Aug; 271(35):21226-30. PubMed ID: 8702895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the signal sequences for two mitochondrial matrix proteins that are not proteolytically processed upon import.
    Hammen PK; Gorenstein DG; Weiner H
    Biochemistry; 1994 Jul; 33(28):8610-7. PubMed ID: 7913339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide.
    Sztul ES; Hendrick JP; Kraus JP; Wall D; Kalousek F; Rosenberg LE
    J Cell Biol; 1987 Dec; 105(6 Pt 1):2631-9. PubMed ID: 3693395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of molecular biology to study aldehyde dehydrogenase.
    Weiner H
    Alcohol Alcohol Suppl; 1993; 2():63-6. PubMed ID: 7748349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D NMR and structural model for a mitochondrial signal peptide bound to a micelle.
    Karslake C; Piotto ME; Pak YK; Weiner H; Gorenstein DG
    Biochemistry; 1990 Oct; 29(42):9872-8. PubMed ID: 2271626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence of the precursor of bovine liver mitochondrial aldehyde dehydrogenase as determined from its cDNA, its gene, and its functionality.
    Guan KL; Weiner H
    Arch Biochem Biophys; 1990 Mar; 277(2):351-60. PubMed ID: 1689984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP).
    Mukhopadhyay A; Hammen P; Waltner-Law M; Weiner H
    Protein Sci; 2002 May; 11(5):1026-35. PubMed ID: 11967360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of protein size on the rate of import of the precursors of aldehyde dehydrogenase and ornithine transcarbamylase into rat liver mitochondria.
    Wang TT; Wang Y; Weiner H
    Alcohol Clin Exp Res; 1991 Mar; 15(2):286-90. PubMed ID: 2058806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha helical structures in the leader sequence of human GLUD2 glutamate dehydrogenase responsible for mitochondrial import.
    Kotzamani D; Plaitakis A
    Neurochem Int; 2012 Sep; 61(4):463-9. PubMed ID: 22709669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precursors and post translational modification of mitochondrial aldehyde dehydrogenase.
    Weiner H; Wang TT; Farrés J; Jeng JJ
    Prog Clin Biol Res; 1989; 290():81-92. PubMed ID: 2726825
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.