BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9792657)

  • 1. Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis.
    Barth H; Preiss JC; Hofmann F; Aktories K
    J Biol Chem; 1998 Nov; 273(45):29506-11. PubMed ID: 9792657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo.
    Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H
    Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin.
    Barth H; Hofmann F; Olenik C; Just I; Aktories K
    Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile.
    Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H
    Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components.
    Barth H; Roebling R; Fritz M; Aktories K
    J Biol Chem; 2002 Feb; 277(7):5074-81. PubMed ID: 11741886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300.
    Sterthoff C; Lang AE; Schwan C; Tauch A; Aktories K
    Infect Immun; 2010 Apr; 78(4):1468-74. PubMed ID: 20145093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol.
    Haug G; Leemhuis J; Tiemann D; Meyer DK; Aktories K; Barth H
    J Biol Chem; 2003 Aug; 278(34):32266-74. PubMed ID: 12805360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins.
    Hochmann H; Pust S; von Figura G; Aktories K; Barth H
    Biochemistry; 2006 Jan; 45(4):1271-7. PubMed ID: 16430223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain.
    Haug G; Wilde C; Leemhuis J; Meyer DK; Aktories K; Barth H
    Biochemistry; 2003 Dec; 42(51):15284-91. PubMed ID: 14690438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.
    Chellapandi P; Prisilla A
    Curr Protein Pept Sci; 2017; 18(5):412-424. PubMed ID: 27915984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death.
    Heine K; Pust S; Enzenmüller S; Barth H
    Infect Immun; 2008 Oct; 76(10):4600-8. PubMed ID: 18710868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin.
    Barth H; Aktories K
    Eur J Cell Biol; 2011 Nov; 90(11):944-50. PubMed ID: 21247657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin.
    Prisilla A; Prathiviraj R; Chellapandi P
    J Mol Evol; 2017 Apr; 84(4):174-186. PubMed ID: 28382496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of immunogenic Clostridium botulinum C2I mutant proteins designed from their evolutionary imprints.
    Prisilla A; Chellapandi P
    Comp Immunol Microbiol Infect Dis; 2019 Aug; 65():207-212. PubMed ID: 31300115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.
    Aktories K; Barth H
    Int J Med Microbiol; 2004 Apr; 293(7-8):557-64. PubMed ID: 15149031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.
    Prisilla A; Prathiviraj R; Sasikala R; Chellapandi P
    Infect Genet Evol; 2016 Oct; 44():17-27. PubMed ID: 27320793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a Clostridium botulinum C2 toxin-resistant cell line: evidence for possible involvement of the cellular C2II receptor in growth regulation.
    Fritz G; Schroeder P; Aktories K
    Infect Immun; 1995 Jun; 63(6):2334-40. PubMed ID: 7768618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells.
    Kaiser E; Böhm N; Ernst K; Langer S; Schwan C; Aktories K; Popoff M; Fischer G; Barth H
    Cell Microbiol; 2012 Aug; 14(8):1193-205. PubMed ID: 22420783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.