BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9792770)

  • 1. Understanding Nonidealities of the Osmotic Pressure of Concentrated Bovine Serum Albumin.
    Yousef MA; Datta R; Rodgers VGJ
    J Colloid Interface Sci; 1998 Nov; 207(2):273-282. PubMed ID: 9792770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-Solvent Model of Osmotic Pressure Revisited: Application to Concentrated IgG Solution under Physiological Conditions.
    Yousef MA; Datta R; Rodgers VGJ
    J Colloid Interface Sci; 1998 Jan; 197(1):108-18. PubMed ID: 9466850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the molecular sources of nonideal osmotic pressure of bovine serum albumin solutions as a function of pH.
    Kanal KM; Fullerton GD; Cameron IL
    Biophys J; 1994 Jan; 66(1):153-60. PubMed ID: 8130335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic pressure method to measure salt induced folding/unfolding of bovine serum albumin.
    Zimmerman RJ; Kanal KM; Sanders J; Cameron IL; Fullerton GD
    J Biochem Biophys Methods; 1995 Jun; 30(2-3):113-31. PubMed ID: 7494089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and applications of a concentrating membrane osmometer for colloid solutions.
    Hale CS; McBride DW; Batarseh R; Hughey J; Vang K; Rodgers VGJ
    Rev Sci Instrum; 2019 Mar; 90(3):034102. PubMed ID: 30927796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration.
    Fullerton GD; Kanal KM; Cameron IL
    Cell Biol Int; 2006 Jan; 30(1):86-92. PubMed ID: 16376113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation and Prediction of Osmotic Pressures for Aqueous Bovine Serum Albumin-NaCl Solutions Based on Two Yukawa Potentials.
    Lin YZ; Li YG; Lu JF
    J Colloid Interface Sci; 2001 Jul; 239(1):58-63. PubMed ID: 11397048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro.
    Courtenay ES; Capp MW; Anderson CF; Record MT
    Biochemistry; 2000 Apr; 39(15):4455-71. PubMed ID: 10757995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.
    McBride DW; Rodgers VG
    PLoS One; 2013; 8(12):e81933. PubMed ID: 24324733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic characterization of interactions of native bovine serum albumin with highly excluded (glycine betaine) and moderately accumulated (urea) solutes by a novel application of vapor pressure osmometry.
    Zhang W; Capp MW; Bond JP; Anderson CF; Record MT
    Biochemistry; 1996 Aug; 35(32):10506-16. PubMed ID: 8756707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of osmotic pressure in solutions of one and two nondiffusible components.
    Shaw M
    Biophys J; 1976 Jan; 16(1):43-57. PubMed ID: 942685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrogating the Osmotic Pressure of Self-Crowded Bovine Serum Albumin Solutions: Implications of Specific Monovalent Anion Effects Relative to the Hofmeister Series.
    Hale CS; Ornelas DN; Yang JS; Chang L; Vang K; Batarseh RN; Ozaki N; Rodgers VGJ
    J Phys Chem B; 2018 Aug; 122(33):8037-8046. PubMed ID: 30074781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exclusion in hyaluronate gels.
    Shaw M; Schy A
    Biophys J; 1977 Jan; 17(1):47-55. PubMed ID: 831856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of grouped intracellular solute osmotic virial coefficients.
    Zielinski MW; McGann LE; Nychka JA; Elliott JAW
    Cryobiology; 2020 Dec; 97():198-216. PubMed ID: 31586549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multisolute osmotic virial equation for solutions of interest in biology.
    Elliott JA; Prickett RC; Elmoazzen HY; Porter KR; McGann LE
    J Phys Chem B; 2007 Feb; 111(7):1775-85. PubMed ID: 17266364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system.
    Orioni B; Roversi M; La Mesa C; Asaro F; Pellizer G; D'Errico G
    J Phys Chem B; 2006 Jun; 110(24):12129-40. PubMed ID: 16800527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.