BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9794148)

  • 1. Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: effects of iron chelators.
    Benderitter M; Maupoil V; Vergely C; Dalloz F; Briot F; Rochette L
    Fundam Clin Pharmacol; 1998; 12(5):510-6. PubMed ID: 9794148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased endogenous ascorbyl free radical formation with singlet oxygen scavengers in reperfusion injury: an EPR and functional recovery study in rat hearts.
    Lee JW; Bobst EV; Wang YG; Ashraf MM; Bobst AM
    Cell Mol Biol (Noisy-le-grand); 2000 Dec; 46(8):1383-95. PubMed ID: 11156483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between 6-hydroxydopamine and transferrin: "Let my iron go".
    Borisenko GG; Kagan VE; Hsia CJ; Schor NF
    Biochemistry; 2000 Mar; 39(12):3392-400. PubMed ID: 10727233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH-cytochrome-P450 reductase promotes hydroxyl radical production by the iron complex of ADR-925, the hydrolysis product of ICRF-187 (dexrazoxane).
    Hasinoff BB
    Free Radic Res; 1995 Apr; 22(4):319-25. PubMed ID: 7633562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferritin-dependent radical generation in rat liver homogenates.
    Rousseau I; Puntarulo S
    Toxicology; 2009 Oct; 264(3):155-61. PubMed ID: 19651187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins.
    Mouithys-Mickalad A; Deby C; Deby-Dupont G; Lamy M
    Biometals; 1998 Apr; 11(2):81-8. PubMed ID: 9542060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents].
    Riabchenko NI; Riabchenko VI; Ivannik BP; Dzikovskaia LA; Sin'kova RV; Grosheva IP; Degtiareva ES; Ivanova TI
    Radiats Biol Radioecol; 2010; 50(2):186-94. PubMed ID: 20464967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N,N'-bis-dibenzyl ethylenediaminediacetic acid (DBED): a site-specific hydroxyl radical scavenger acting as an "oxidative stress activatable" iron chelator in vitro.
    Galey JB; Dumats J; Beck I; Fernandez B; Hocquaux M
    Free Radic Res; 1995 Jan; 22(1):67-86. PubMed ID: 7889149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures: comparison of their mechanism of protection with that of desferrioxamine.
    Morel I; Cillard J; Lescoat G; Sergent O; Pasdeloup N; Ocaktan AZ; Abdallah MA; Brissot P; Cillard P
    Free Radic Biol Med; 1992 Nov; 13(5):499-508. PubMed ID: 1334028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the severity of myocardial ischemia on the intensity of ascorbyl free radical release and on postischemic recovery during reperfusion.
    Vergely C; Maupoil V; Benderitter M; Rochette L
    Free Radic Biol Med; 1998 Feb; 24(3):470-9. PubMed ID: 9438560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbyl free radical as a real-time marker of free radical generation in briefly ischemic and reperfused hearts. An electron paramagnetic resonance study.
    Sharma MK; Buettner GR; Spencer KT; Kerber RE
    Circ Res; 1994 Apr; 74(4):650-8. PubMed ID: 8137501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute iron overload and oxidative stress in brain.
    Piloni NE; Fermandez V; Videla LA; Puntarulo S
    Toxicology; 2013 Dec; 314(1):174-82. PubMed ID: 24120471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbyl free radical release in diabetic patients.
    Courderot-Masuyer C; Lahet JJ; Verges B; Brun JM; Rochette L
    Cell Mol Biol (Noisy-le-grand); 2000 Dec; 46(8):1397-401. PubMed ID: 11156484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.