BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 9794415)

  • 1. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells.
    Wajeman-Chao SA; Lancaster SA; Graf LH; Chambers DA
    J Immunol; 1998 Nov; 161(9):4825-33. PubMed ID: 9794415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biphasic regulation of the messenger ribonucleic acid coding for the estrogen receptor by cyclic adenosine 3':5'-monophosphate in tumor Leydig cells.
    Ree AH; Frøysa A; Eskild W; Jahnsen T; Hansson V
    Cancer Res; 1990 Mar; 50(5):1528-31. PubMed ID: 2154326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid priming potentiates the induction of urokinase-type plasminogen activator by cyclic adenosine monophosphate in mouse mammary carcinoma cells.
    Mira-y-Lopez R
    J Cell Physiol; 1991 Apr; 147(1):46-54. PubMed ID: 1645361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels.
    Anastassiou ED; Paliogianni F; Balow JP; Yamada H; Boumpas DT
    J Immunol; 1992 May; 148(9):2845-52. PubMed ID: 1374102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ig-induced eosinophil degranulation by adenosine 3',5'-cyclic monophosphate.
    Kita H; Abu-Ghazaleh RI; Gleich GJ; Abraham RT
    J Immunol; 1991 Apr; 146(8):2712-8. PubMed ID: 1707917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catecholamine regulation of human erythrocyte membrane protein kinase.
    Tsukamoto T; Sonenberg M
    J Clin Invest; 1979 Aug; 64(2):534-40. PubMed ID: 222812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of mouse B-cell activation by beta-adrenoceptor stimulation depending on type of mitogens.
    Li YS; Kouassi E; Revillard JP
    Immunology; 1990 Mar; 69(3):367-72. PubMed ID: 2155873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of lymphoma cell death induced by cyclic AMP.
    Coffino P; Bourne HR; Tomkins GM
    Am J Pathol; 1975 Oct; 81(1):199-204. PubMed ID: 170834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide-induced gene expression in murine peritoneal macrophages is selectively suppressed by agents that elevate intracellular cAMP.
    Tannenbaum CS; Hamilton TA
    J Immunol; 1989 Feb; 142(4):1274-80. PubMed ID: 2536771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors.
    Bronnikov G; Houstĕk J; Nedergaard J
    J Biol Chem; 1992 Jan; 267(3):2006-13. PubMed ID: 1346138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dibutyryl-cAMP increases functions of 5-hydroxytryptamine2 receptors, but not of beta 2-adrenergic receptors, in a clonal cell line of rat neurotumor RT4.
    Shigeri Y; Watanabe S; Fujimoto M
    J Cell Physiol; 1992 Jan; 150(1):28-33. PubMed ID: 1309826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cyclic AMP on the cell cycle regulation of ribonucleotide reductase M2 subunit messenger RNA concentrations in wild-type and mutant S49 T lymphoma cells.
    Albert DA; Nodzenski E; Yim G; Kowalski J
    J Cell Physiol; 1990 May; 143(2):251-6. PubMed ID: 2159014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cAMP influence on transcription of thrombomodulin is dependent on de novo synthesis of a protein intermediate: evidence for cohesive regulation of myogenic proteins in vascular smooth muscle.
    Traynor AE; Cundiff DL; Soff GA
    J Lab Clin Med; 1995 Sep; 126(3):316-23. PubMed ID: 7665981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced mRNA levels for the multidrug-resistance genes in cAMP-dependent protein kinase mutant cell lines.
    Chin KV; Chauhan SS; Abraham I; Sampson KE; Krolczyk AJ; Wong M; Schimmer B; Pastan I; Gottesman MM
    J Cell Physiol; 1992 Jul; 152(1):87-94. PubMed ID: 1352302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-independent effects of cholera toxin on B cell activation. I. A possible role for cell surface ganglioside GM1 in B cell activation.
    Francis ML; Moss J; Fitz TA; Mond JJ
    J Immunol; 1990 Nov; 145(10):3162-9. PubMed ID: 2172379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones.
    Melmon KL; Bourne HR; Weinstein Y; Shearer GM; Kram J; Bauminger S
    J Clin Invest; 1974 Jan; 53(1):13-21. PubMed ID: 4357609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists.
    Severn A; Rapson NT; Hunter CA; Liew FY
    J Immunol; 1992 Jun; 148(11):3441-5. PubMed ID: 1350291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP differentially regulates expression of mRNA encoding IL-1 alpha and IL-1 beta in murine peritoneal macrophages.
    Ohmori Y; Strassman G; Hamilton TA
    J Immunol; 1990 Nov; 145(10):3333-9. PubMed ID: 2172382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.