BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 9794917)

  • 1. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes.
    Bailey SM; Cunningham CC
    Hepatology; 1998 Nov; 28(5):1318-26. PubMed ID: 9794917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dietary fat on chronic ethanol-induced oxidative stress in hepatocytes.
    Bailey SM; Cunningham CC
    Alcohol Clin Exp Res; 1999 Jul; 23(7):1210-8. PubMed ID: 10443988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.
    González A; Pariente JA; Salido GM
    Brain Res; 2007 Oct; 1178():28-37. PubMed ID: 17888892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: carbonyl-metabolizing enzymes versus oxidative stress.
    MacAllister SL; Choi J; Dedina L; O'Brien PJ
    Chem Biol Interact; 2011 May; 191(1-3):308-14. PubMed ID: 21276436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ethanol treatment upon sources of reactive oxygen species in brain and liver.
    Bondy SC; Orozco J
    Alcohol Alcohol; 1994 Jul; 29(4):375-83. PubMed ID: 7986274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of chronic ethanol consumption on NADH- and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Alcohol Alcohol; 1992 May; 27(3):233-9. PubMed ID: 1449558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol-induced dysfunction of hepatocytes and leukocytes in patients without liver failure.
    Gheorghiu M; Bâră C; Păsărică D; Braşoveanu L; Bleotu C; Topârceanu F; Trandafir T; Diaconu CC
    Roum Arch Microbiol Immunol; 2004; 63(1-2):5-33. PubMed ID: 16295318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chronic ethanol consumption on respiratory and glycolytic activities of rat periportal and perivenous hepatocytes.
    Baio DL; Czyz CN; Van Horn CG; Ivester P; Cunningham CC
    Arch Biochem Biophys; 1998 Feb; 350(2):193-200. PubMed ID: 9473292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.
    Mira L; Maia L; Barreira L; Manso CF
    Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased toxicity by transforming growth factor-beta 1 in liver cells overexpressing CYP2E1.
    Zhuge J; Cederbaum AI
    Free Radic Biol Med; 2006 Oct; 41(7):1100-12. PubMed ID: 16962935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate determining factors of ethanol oxidation in hepatocytes from starved and fed rats: effect of acetaldehyde concentration on the rate of NADH oxidation catalyzed by alcohol dehydrogenase.
    Vind C; Grunnet N
    Alcohol Alcohol Suppl; 1987; 1():295-9. PubMed ID: 3426694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation.
    Eghbal MA; Pennefather PS; O'Brien PJ
    Toxicology; 2004 Oct; 203(1-3):69-76. PubMed ID: 15363583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ethanol and acetaldehyde on reactive oxygen species production in rat hepatic stellate cells.
    Novitskiy G; Traore K; Wang L; Trush MA; Mezey E
    Alcohol Clin Exp Res; 2006 Aug; 30(8):1429-35. PubMed ID: 16899047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine potentiation of allyl alcohol-induced hepatotoxicity. II. In vitro study.
    Karas M; Chakrabarti SK
    J Environ Pathol Toxicol Oncol; 2001; 20(2):155-64. PubMed ID: 11394714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress and alcoholic liver disease.
    Wu D; Cederbaum AI
    Semin Liver Dis; 2009 May; 29(2):141-54. PubMed ID: 19387914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phagocytosis and production of reactive oxygen species by peripheral blood phagocytes in patients with different stages of alcohol-induced liver disease: effect of acute exposure to low ethanol concentrations.
    Parlesak A; Schäfer C; Paulus SB; Hammes S; Diedrich JP; Bode C
    Alcohol Clin Exp Res; 2003 Mar; 27(3):503-8. PubMed ID: 12658117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen free radical production mediated by cocaine and its ethanol-derived metabolite, cocaethylene, in rat hepatocytes.
    Boelsterli UA; Wolf A; Göldlin C
    Hepatology; 1993 Nov; 18(5):1154-61. PubMed ID: 8225222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor-induced cell death by replenishing mitochondrial glutathione.
    Colell A; Coll O; García-Ruiz C; París R; Tiribelli C; Kaplowitz N; Fernández-Checa JC
    Hepatology; 2001 Nov; 34(5):964-71. PubMed ID: 11679967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of p-nitroanisole O-demethylation by ethanol in perfused livers from fasted rats.
    Reinke LA; Kauffman FC; Thurman RG
    J Pharmacol Exp Ther; 1979 Oct; 211(1):133-9. PubMed ID: 490314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.