BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9795195)

  • 1. Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor.
    Wong DL; Siddall BJ; Ebert SN; Bell RA; Her S
    Brain Res Mol Brain Res; 1998 Oct; 61(1-2):154-61. PubMed ID: 9795195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene.
    Ebert SN; Balt SL; Hunter JP; Gashler A; Sukhatme V; Wong DL
    J Biol Chem; 1994 Aug; 269(33):20885-98. PubMed ID: 8063705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene.
    Tai TC; Claycomb R; Her S; Bloom AK; Wong DL
    Mol Pharmacol; 2002 Jun; 61(6):1385-92. PubMed ID: 12021400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Egr-1 in cAMP-dependent protein kinase regulation of the phenylethanolamine N-methyltransferase gene.
    Tai TC; Morita K; Wong DL
    J Neurochem; 2001 Mar; 76(6):1851-9. PubMed ID: 11259503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methyltransferase gene regulation.
    Tai TC; Wong DL
    J Neurochem; 2003 May; 85(3):816-29. PubMed ID: 12694408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of transcription factor Egr-1 in phorbol ester-induced phenylethanolamine N-methyltransferase gene expression.
    Morita K; Ebert SN; Wong DL
    J Biol Chem; 1995 May; 270(19):11161-7. PubMed ID: 7744747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia and adrenergic function: molecular mechanisms related to Egr-1 and Sp1 activation.
    Tai TC; Wong-Faull DC; Claycomb R; Wong DL
    Brain Res; 2010 Sep; 1353():14-27. PubMed ID: 20654592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PACAP-regulated phenylethanolamine N-methyltransferase gene expression.
    Tai TC; Wong-Faull DC; Claycomb R; Aborn JL; Wong DL
    J Neurochem; 2010 Dec; 115(5):1195-205. PubMed ID: 21039521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1.
    Ebert SN; Wong DL
    J Biol Chem; 1995 Jul; 270(29):17299-305. PubMed ID: 7615530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-methyltransferase gene expression.
    Ebert SN; Ficklin MB; Her S; Siddall BJ; Bell RA; Ganguly K; Morita K; Wong DL
    J Neurochem; 1998 Jun; 70(6):2286-95. PubMed ID: 9603193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Egr-1 in cholinergic stimulation of phenylethanolamine N-methyltransferase promoter.
    Morita K; Wong DL
    J Neurochem; 1996 Oct; 67(4):1344-51. PubMed ID: 8858914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve growth factor regulates adrenergic expression.
    Tai TC; Wong-Faull DC; Claycomb R; Wong DL
    Mol Pharmacol; 2006 Nov; 70(5):1792-801. PubMed ID: 16926281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homodimerization of the glucocorticoid receptor is not essential for response element binding: activation of the phenylethanolamine N-methyltransferase gene by dimerization-defective mutants.
    Adams M; Meijer OC; Wang J; Bhargava A; Pearce D
    Mol Endocrinol; 2003 Dec; 17(12):2583-92. PubMed ID: 12933902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic mechanisms for adrenergic control during stress.
    Wong DL; Tai TC; Wong-Faull DC; Claycomb R; Kvetnansky R
    Ann N Y Acad Sci; 2004 Jun; 1018():387-97. PubMed ID: 15240394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxic stress-induced changes in adrenergic function: role of HIF1 alpha.
    Tai TC; Wong-Faull DC; Claycomb R; Wong DL
    J Neurochem; 2009 Apr; 109(2):513-24. PubMed ID: 19220706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture.
    Ross ME; Evinger MJ; Hyman SE; Carroll JM; Mucke L; Comb M; Reis DJ; Joh TH; Goodman HM
    J Neurosci; 1990 Feb; 10(2):520-30. PubMed ID: 2303857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylethanolamine N-methyltransferase gene expression. Sp1 and MAZ potential for tissue-specific expression.
    Her S; Bell RA; Bloom AK; Siddall BJ; Wong DL
    J Biol Chem; 1999 Mar; 274(13):8698-707. PubMed ID: 10085109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocyte nuclear factor 1 and the glucocorticoid receptor synergistically activate transcription of the rat insulin-like growth factor binding protein-1 gene.
    Suh DS; Rechler MM
    Mol Endocrinol; 1997 Nov; 11(12):1822-31. PubMed ID: 9369450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic and peptidergic regulation of phenylethanolamine N-methyltransferase gene expression.
    Wong DL; Anderson LJ; Tai TC
    Ann N Y Acad Sci; 2002 Oct; 971():19-26. PubMed ID: 12438084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac phenylethanolamine N-methyltransferase: localization and regulation of gene expression in the spontaneously hypertensive rat.
    Peltsch H; Khurana S; Byrne CJ; Nguyen P; Khaper N; Kumar A; Tai TC
    Can J Physiol Pharmacol; 2016 Apr; 94(4):363-72. PubMed ID: 26761434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.