These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 9796151)
1. Investigation of early bone formation using resorbable bioactive glass in the rat mandible. Furusawa T; Mizunuma K; Yamashita S; Takahashi T Int J Oral Maxillofac Implants; 1998; 13(5):672-6. PubMed ID: 9796151 [TBL] [Abstract][Full Text] [Related]
2. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibias. Melo LG; Nagata MJ; Bosco AF; Ribeiro LL; Leite CM Clin Oral Implants Res; 2005 Dec; 16(6):683-91. PubMed ID: 16307575 [TBL] [Abstract][Full Text] [Related]
3. Influence of bioactive glass and/or acellular dermal matrix on bone healing of surgically created defects in rat tibiae: a histological and histometric study. Ribeiro LL; Bosco AF; Nagata MJ; de Melo LG Int J Oral Maxillofac Implants; 2008; 23(5):811-7. PubMed ID: 19014149 [TBL] [Abstract][Full Text] [Related]
4. Effect of local delivery of alendronate on bone formation in bioactive glass grafting in rats. Srisubut S; Teerakapong A; Vattraphodes T; Taweechaisupapong S Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Oct; 104(4):e11-6. PubMed ID: 17656137 [TBL] [Abstract][Full Text] [Related]
5. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890 [TBL] [Abstract][Full Text] [Related]
6. Bone engineering of the rabbit ulna. El-Ghannam A; Cunningham L; Pienkowski D; Hart A J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274 [TBL] [Abstract][Full Text] [Related]
7. Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Szubtarsky N Int J Oral Maxillofac Surg; 2009 Feb; 38(2):166-72. PubMed ID: 19121923 [TBL] [Abstract][Full Text] [Related]
8. Characterization of bone around titanium implants and bioactive glass particles: an experimental study in rats. Gorustovich A; Rosenbusch M; Guglielmotti MB Int J Oral Maxillofac Implants; 2002; 17(5):644-50. PubMed ID: 12381064 [TBL] [Abstract][Full Text] [Related]
9. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
10. A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs. Jung RE; Lecloux G; Rompen E; Ramel CF; Buser D; Hammerle CH Clin Oral Implants Res; 2009 Feb; 20(2):151-61. PubMed ID: 19191792 [TBL] [Abstract][Full Text] [Related]
11. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. Schepers EJ; Ducheyne P J Oral Rehabil; 1997 Mar; 24(3):171-81. PubMed ID: 9131472 [TBL] [Abstract][Full Text] [Related]
12. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. Gorustovich AA; Steimetz T; Cabrini RL; Porto López JM J Biomed Mater Res A; 2010 Jan; 92(1):232-7. PubMed ID: 19172615 [TBL] [Abstract][Full Text] [Related]
13. Guided bone regeneration with the combined use of resorbable membranes and autogenous drilling dust or xenografts for the treatment of dehiscence-type defects around implants: an experimental study in dogs. Lee SH; Yoon HJ; Park MK; Kim YS Int J Oral Maxillofac Implants; 2008; 23(6):1089-94. PubMed ID: 19216278 [TBL] [Abstract][Full Text] [Related]
14. Low-temperature particulate calcium phosphates for bone regeneration. Araújo MV; Mendes VC; Chattopadhyay P; Davies JE Clin Oral Implants Res; 2010 Jun; 21(6):632-41. PubMed ID: 20666790 [TBL] [Abstract][Full Text] [Related]
15. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial. Koo KT; Polimeni G; Qahash M; Kim CK; Wikesjö UM J Clin Periodontol; 2005 Jan; 32(1):104-10. PubMed ID: 15642067 [TBL] [Abstract][Full Text] [Related]
16. Bone healing in critical-size defects treated with bioactive glass/calcium sulfate: a histologic and histometric study in rat calvaria. Furlaneto FA; Nagata MJ; Fucini SE; Deliberador TM; Okamoto T; Messora MR Clin Oral Implants Res; 2007 Jun; 18(3):311-8. PubMed ID: 17298488 [TBL] [Abstract][Full Text] [Related]
17. Acceleration of de novo bone formation with a novel bioabsorbable film: a histomorphometric study in vivo. He H; Yan W; Chen G; Lu Z J Oral Pathol Med; 2008 Jul; 37(6):378-82. PubMed ID: 18355176 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the bone tissue response to glass-ionomer microimplants in the canine maxillary alveolar ridge. Burić N; Jovanović G; Krasić D; Kesić L J Oral Sci; 2003 Dec; 45(4):207-12. PubMed ID: 14763516 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
20. Oily calcium hydroxide suspension (Osteoinductal) used as an adjunct to guided bone regeneration: an experimental study in rats. Stavropoulos A; Geenen C; Nyengaard JR; Karring T; Sculean A Clin Oral Implants Res; 2007 Dec; 18(6):761-7. PubMed ID: 17868387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]