These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9796306)

  • 41. p122 protein enhances intracellular calcium increase to acetylcholine: its possible role in the pathogenesis of coronary spastic angina.
    Murakami R; Osanai T; Tomita H; Sasaki S; Maruyama A; Itoh K; Homma Y; Okumura K
    Arterioscler Thromb Vasc Biol; 2010 Oct; 30(10):1968-75. PubMed ID: 20634475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endothelial dysfunction and coronary artery spasm.
    Kawano H; Ogawa H
    Curr Drug Targets Cardiovasc Haematol Disord; 2004 Mar; 4(1):23-33. PubMed ID: 15032650
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple endothelial injury in epicardial coronary artery induces downstream microvascular spasm as well as remodeling partly via thromboxane A2.
    Saitoh S; Onogi F; Aikawa K; Muto M; Saito T; Maehara K; Maruyama Y
    J Am Coll Cardiol; 2001 Jan; 37(1):308-15. PubMed ID: 11153757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glutathione attenuates coronary constriction to acetylcholine in patients with coronary spastic angina.
    Kugiyama K; Miyao Y; Sakamoto T; Kawano H; Soejima H; Miyamoto S; Yoshimura M; Ogawa H; Sugiyama S; Yasue H
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H264-71. PubMed ID: 11123241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heparin-releasable endothelial cell-associated tissue factor pathway inhibitor (TFPI) is increased in the coronary circulation after coronary spasm in patients with coronary spastic angina.
    Nishiyama K; Ogawa H; Yasue H; Soejima H; Misumi K; Kugiyama K; Tsuji I; Kumeda K
    Thromb Res; 1998 Feb; 89(3):137-46. PubMed ID: 9622042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent insights into the mechanisms, predisposing factors, and racial differences of coronary vasospasm.
    Miwa K; Fujita M; Sasayama S
    Heart Vessels; 2005 Feb; 20(1):1-7. PubMed ID: 15700195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Clinical study and physiopathology of coronary vasospasm].
    Yasue H
    Nihon Naika Gakkai Zasshi; 1995 Sep; 84(9):1407-15. PubMed ID: 8537741
    [No Abstract]   [Full Text] [Related]  

  • 48. Evaluation of basic performance and applicability of a newly developed in vivo nitric oxide sensor.
    Mochizuki S; Himi N; Miyasaka T; Nakamoto H; Takemoto M; Hirano K; Tsujioka K; Ogasawara Y; Kajiya F
    Physiol Meas; 2002 May; 23(2):261-8. PubMed ID: 12051298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of antioxidants on coronary microvascular spasm induced by epicardial coronary artery endothelial injury in pigs.
    Aikawa K; Saitoh S; Muto M; Osugi T; Matsumoto K; Onogi F; Maehara K; Yaoita H; Maruyama Y
    Coron Artery Dis; 2004 Feb; 15(1):21-30. PubMed ID: 15201617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Pathophysiology of coronary vasospasm].
    Miyazaki S
    Nihon Rinsho; 2003 Apr; 61 Suppl 4():93-5. PubMed ID: 12734959
    [No Abstract]   [Full Text] [Related]  

  • 51. Vasospastic Angina and its Relationship with the Coronary Microcirculation.
    Cenko E; Bergami M; Varotti E; Bugiardini R
    Curr Pharm Des; 2018; 24(25):2906-2910. PubMed ID: 29938613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Major racial differences in coronary constrictor response between japanese and caucasians with recent myocardial infarction.
    Pristipino C; Beltrame JF; Finocchiaro ML; Hattori R; Fujita M; Mongiardo R; Cianflone D; Sanna T; Sasayama S; Maseri A
    Circulation; 2000 Mar; 101(10):1102-8. PubMed ID: 10715255
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic interaction of T-786-->C polymorphism in the endothelial nitric oxide synthase gene and smoking for an enhanced risk for coronary spasm.
    Nakayama M; Yoshimura M; Sakamoto T; Shimasaki Y; Nakamura S; Ito T; Abe K; Yamamuro M; Miyamoto Y; Saito Y; Nakao K; Yasue H; Ogawa H
    Pharmacogenetics; 2003 Nov; 13(11):683-8. PubMed ID: 14583681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coronary artery spasm - Clinical features, pathogenesis and treatment.
    Yasue H; Mizuno Y; Harada E
    Proc Jpn Acad Ser B Phys Biol Sci; 2019; 95(2):53-66. PubMed ID: 30745502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Coronary spasm and its underlying mechanisms].
    Yasue H; Mizuno Y; Harada E
    Nihon Rinsho; 2016 Jun; 74 Suppl 4 Pt 1():109-13. PubMed ID: 27534156
    [No Abstract]   [Full Text] [Related]  

  • 56. [Pathology and pathophysiology of coronary spasm].
    Arase S; Yoshimura M
    Nihon Rinsho; 2011 Sep; 69 Suppl 7():117-22. PubMed ID: 22518976
    [No Abstract]   [Full Text] [Related]  

  • 57. Coronary vasospasm in humans: the role of atherosclerosis and of impaired endothelial vasodilator function.
    Ganz P; Weidinger FF; Yeung AC; Vekshtein VI; Vita JA; Ryan TJ; McLenachan JM; Selwyn AP
    Basic Res Cardiol; 1991; 86 Suppl 2():215-22. PubMed ID: 1953613
    [No Abstract]   [Full Text] [Related]  

  • 58. Nitric oxide and hypertension.
    Benjamin N; Vane J
    Circulation; 1996 Sep; 94(6):1197-8. PubMed ID: 8822966
    [No Abstract]   [Full Text] [Related]  

  • 59. Pathogenetic mechanisms of coronary vasospasm.
    Chierchia S
    Acta Med Scand Suppl; 1982; 660():49-56. PubMed ID: 6958192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of coronary artery spasm.
    Lanza GA; Careri G; Crea F
    Circulation; 2011 Oct; 124(16):1774-82. PubMed ID: 22007100
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.