BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9796676)

  • 21. Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures.
    Markolf KL; Wascher DC; Finerman GA
    J Bone Joint Surg Am; 1993 Mar; 75(3):387-94. PubMed ID: 8444917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon.
    Ristaniemi A; Stenroth L; Mikkonen S; Korhonen RK
    J Biomech; 2018 Oct; 79():31-38. PubMed ID: 30082085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament.
    Kwan MK; Lin TH; Woo SL
    J Biomech; 1993; 26(4-5):447-52. PubMed ID: 8478348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee.
    Wascher DC; Markolf KL; Shapiro MS; Finerman GA
    J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament.
    Hirokawa S; Tsuruno R
    J Biomech; 2000 Sep; 33(9):1069-77. PubMed ID: 10854879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of muscle forces and external loads on cruciate ligament strain.
    Dürselen L; Claes L; Kiefer H
    Am J Sports Med; 1995; 23(1):129-36. PubMed ID: 7726343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults.
    Stäubli HU; Schatzmann L; Brunner P; Rincón L; Nolte LP
    Am J Sports Med; 1999; 27(1):27-34. PubMed ID: 9934415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion.
    Li G; DeFrate LE; Sun H; Gill TJ
    Am J Sports Med; 2004 Sep; 32(6):1415-20. PubMed ID: 15310565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of material models for anterior cruciate ligament in tension: from poroelastic to a novel fibril-reinforced nonlinear composite model.
    Ristaniemi A; Tanska P; Stenroth L; Finnilä MAJ; Korhonen RK
    J Biomech; 2021 Jan; 114():110141. PubMed ID: 33302181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The restraining function of the cruciate ligaments on hyperextension and hyperflexion of the human knee joint.
    Fuss FK
    Anat Rec; 1991 Jun; 230(2):283-9. PubMed ID: 1867405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A theoretical model of the knee and ACL: theory and experimental verification.
    Loch DA; Luo ZP; Lewis JL; Stewart NJ
    J Biomech; 1992 Jan; 25(1):81-90. PubMed ID: 1733986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure.
    Shearer T
    J Biomech; 2015 Jan; 48(2):290-7. PubMed ID: 25482660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons.
    Donahue TL; Gregersen C; Hull ML; Howell SM
    J Biomech Eng; 2001 Apr; 123(2):162-9. PubMed ID: 11340877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous measurement of changes in length of the cruciate ligaments during knee motion.
    Kurosawa H; Yamakoshi K; Yasuda K; Sasaki T
    Clin Orthop Relat Res; 1991 Apr; (265):233-40. PubMed ID: 2009664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness.
    Momersteeg TJ; Blankevoort L; Huiskes R; Kooloos JG; Kauer JM; Hendriks JC
    J Biomech; 1995 Jun; 28(6):745-52. PubMed ID: 7601874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A visco-hyperelastic model with damage for the knee ligaments under dynamic constraints.
    Arnoux PJ; Chabrand P; Jean M; Bonnoit J
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):167-74. PubMed ID: 12186726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.