These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9796679)

  • 1. An energy dissipation-based model for damage stimulated bone adaptation.
    Levenston ME; Carter DR
    J Biomech; 1998 Jul; 31(7):579-86. PubMed ID: 9796679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcrack growth parameters for compact bone deduced from stiffness variations.
    Taylor D
    J Biomech; 1998 Jul; 31(7):587-92. PubMed ID: 9796680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone strain gage data and theoretical models of functional adaptation.
    Mikić B; Carter DR
    J Biomech; 1995 Apr; 28(4):465-9. PubMed ID: 7738056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tension and bending, but not compression alone determine the functional adaptation of subchondral bone in incongruous joints.
    Eckstein F; Merz B; Schön M; Jacobs CR; Putz R
    Anat Embryol (Berl); 1999 Jan; 199(1):85-97. PubMed ID: 9924938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdamage and bone mechanobiology.
    Lee TC; O'Brien FJ; Gunnlaugsson T; Parkesh R; Taylor D
    Technol Health Care; 2006; 14(4-5):359-65. PubMed ID: 17065757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yield strain behavior of trabecular bone.
    Kopperdahl DL; Keaveny TM
    J Biomech; 1998 Jul; 31(7):601-8. PubMed ID: 9796682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of bone adaptation using damage accumulation.
    Prendergast PJ; Taylor D
    J Biomech; 1994 Aug; 27(8):1067-76. PubMed ID: 8089161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cumulative damage model for bone fracture.
    Carter DR; Caler WE
    J Orthop Res; 1985; 3(1):84-90. PubMed ID: 3981298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rate-independent continuum model for bone tissue with interaction of compressive and tensile micro-damage.
    Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2017 Oct; 74():448-462. PubMed ID: 28735723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Bone adaptation to mechanical loading].
    Torstveit MK
    Tidsskr Nor Laegeforen; 2002 Sep; 122(21):2109-11. PubMed ID: 12555647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical model of the effect of continuum damage on a bone adaptation model.
    Ramtani S; Zidi M
    J Biomech; 2001 Apr; 34(4):471-9. PubMed ID: 11266670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.