These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9797401)

  • 41. Ffh and FtsY in a Mycoplasma mycoides signal-recognition particle pathway: SRP RNA and M domain of Ffh are not required for stimulation of GTPase activity in vitro.
    Macao B; Luirink J; Samuelsson T
    Mol Microbiol; 1997 May; 24(3):523-34. PubMed ID: 9179846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The root of the tree of life in the light of the covarion model.
    Lopez P; Forterre P; Philippe H
    J Mol Evol; 1999 Oct; 49(4):496-508. PubMed ID: 10486007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog.
    Bernstein HD; Zopf D; Freymann DM; Walter P
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5229-33. PubMed ID: 8389475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain.
    Haddad A; Rose RW; Pohlschröder M
    J Bacteriol; 2005 Jun; 187(12):4015-22. PubMed ID: 15937164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics.
    Winker S; Woese CR
    Syst Appl Microbiol; 1991; 14(4):305-10. PubMed ID: 11540071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A GTP-binding protein of Mycoplasma hominis: a small sized homolog to the signal recognition particle receptor FtsY.
    Ladefoged SA; Christiansen G
    Gene; 1997 Nov; 201(1-2):37-44. PubMed ID: 9409769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A phylogenomic study of the MutS family of proteins.
    Eisen JA
    Nucleic Acids Res; 1998 Sep; 26(18):4291-300. PubMed ID: 9722651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.
    Qureshi SA; Khoo B; Baumann P; Jackson SP
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6077-81. PubMed ID: 7597084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes.
    Klein M; Friedrich M; Roger AJ; Hugenholtz P; Fishbain S; Abicht H; Blackall LL; Stahl DA; Wagner M
    J Bacteriol; 2001 Oct; 183(20):6028-35. PubMed ID: 11567003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication.
    Rosendal KR; Wild K; Montoya G; Sinning I
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14701-6. PubMed ID: 14657338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Empirical genome evolution models root the tree of life.
    Harish A; Kurland CG
    Biochimie; 2017 Jul; 138():137-155. PubMed ID: 28478110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of FtsY, its interaction with Ffh, and proteomic identification of their potential substrates in Mycobacterium tuberculosis.
    Venkatesan A; Palaniyandi K; Sharma D; Bisht D; Narayanan S
    Can J Microbiol; 2018 Apr; 64(4):243-251. PubMed ID: 29361248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ancient gene duplications and the root(s) of the tree of life.
    Zhaxybayeva O; Lapierre P; Gogarten JP
    Protoplasma; 2005 Dec; 227(1):53-64. PubMed ID: 16389494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of phylogenetic inconsistencies in the three domains of life.
    Soria-Carrasco V; Castresana J
    Mol Biol Evol; 2008 Nov; 25(11):2319-29. PubMed ID: 18701430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The two-domain tree of life is linked to a new root for the Archaea.
    Raymann K; Brochier-Armanet C; Gribaldo S
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6670-5. PubMed ID: 25964353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The mosaic nature of the eukaryotic nucleus.
    Ribeiro S; Golding GB
    Mol Biol Evol; 1998 Jul; 15(7):779-88. PubMed ID: 9656480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An estimate of the deepest branches of the tree of life from ancient vertically evolving genes.
    Moody ERR; Mahendrarajah TA; Dombrowski N; Clark JW; Petitjean C; Offre P; Szöllősi GJ; Spang A; Williams TA
    Elife; 2022 Feb; 11():. PubMed ID: 35190025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the GTPase activity and active sites of the NG domains of FtsY and Ffh from Streptomyces coelicolor.
    Dong HJ; Tao SM; Li YQ; Chan SH; Shen XL; Wang CX; Guan WJ
    Acta Biochim Biophys Sin (Shanghai); 2006 Jul; 38(7):467-76. PubMed ID: 16820862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.
    Archibald JM; Logsdon JM; Doolittle WF
    Mol Biol Evol; 2000 Oct; 17(10):1456-66. PubMed ID: 11018153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.