These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9798434)

  • 1. Indoor air quality impacts of ventilation ducts: ozone removal and emissions of volatile organic compounds.
    Morrison GC; Nazaroff WW; Cano-Ruiz JA; Hodgson AT; Modera MP
    J Air Waste Manag Assoc; 1998 Oct; 48(10):941-52. PubMed ID: 9798434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone.
    Reiss R; Ryan PB; Tibbetts SJ; Koutrakis P
    J Air Waste Manag Assoc; 1995 Oct; 45(10):811-22. PubMed ID: 7583840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-to-laboratory analysis of clay wall coatings as passive removal materials for ozone in buildings.
    Darling E; Corsi RL
    Indoor Air; 2017 May; 27(3):658-669. PubMed ID: 27859627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT; Destaillats H; Sullivan DP; Fisk WJ
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Mechanical Ventilation Systems and Human Occupancy on Time-Resolved Source Rates of Volatile Skin Oil Ozonolysis Products in a LEED-Certified Office Building.
    Wu T; Tasoglou A; Huber H; Stevens PS; Boor BE
    Environ Sci Technol; 2021 Dec; 55(24):16477-16488. PubMed ID: 34851619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging investigator series: primary emissions, ozone reactivity, and byproduct emissions from building insulation materials.
    Chin K; Laguerre A; Ramasubramanian P; Pleshakov D; Stephens B; Gall ET
    Environ Sci Process Impacts; 2019 Aug; 21(8):1255-1267. PubMed ID: 30938389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor ozone/human chemistry and ventilation strategies.
    Salvador CM; Bekö G; Weschler CJ; Morrison G; Le Breton M; Hallquist M; Ekberg L; Langer S
    Indoor Air; 2019 Nov; 29(6):913-925. PubMed ID: 31420890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile Organic Compound Emissions from Humans Indoors.
    Tang X; Misztal PK; Nazaroff WW; Goldstein AH
    Environ Sci Technol; 2016 Dec; 50(23):12686-12694. PubMed ID: 27934268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indoor ozone: Concentrations and influencing factors.
    Nazaroff WW; Weschler CJ
    Indoor Air; 2022 Jan; 32(1):e12942. PubMed ID: 34609012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations of formaldehyde and VOC levels during 3 years in new and older homes.
    Park JS; Ikeda K
    Indoor Air; 2006 Apr; 16(2):129-35. PubMed ID: 16507040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of surface ozone interactions on indoor air chemistry: A modeling study.
    Kruza M; Lewis AC; Morrison GC; Carslaw N
    Indoor Air; 2017 Sep; 27(5):1001-1011. PubMed ID: 28303599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects.
    Han KH; Zhang JS; Wargocki P; Knudsen HN; Guo B
    Indoor Air; 2010 Aug; 20(4):341-54. PubMed ID: 20557375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of total volatile organic compound emissions from adhesives based on chamber tests.
    Guo H; Murray F; Wilkinson S
    J Air Waste Manag Assoc; 2000 Feb; 50(2):199-206. PubMed ID: 10680349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions.
    Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J
    Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone in indoor environments: concentration and chemistry.
    Weschler CJ
    Indoor Air; 2000 Dec; 10(4):269-88. PubMed ID: 11089331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outdoor ozone and building-related symptoms in the BASE study.
    Apte MG; Buchanan IS; Mendell MJ
    Indoor Air; 2008 Apr; 18(2):156-70. PubMed ID: 18333994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.
    Singer BC; Destaillats H; Hodgson AT; Nazaroff WW
    Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile organic compounds in fourteen U.S. retail stores.
    Nirlo EL; Crain N; Corsi RL; Siegel JA
    Indoor Air; 2014 Oct; 24(5):484-94. PubMed ID: 24471978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Products of ozone-initiated chemistry in a simulated aircraft environment.
    Wisthaler A; Tamás G; Wyon DP; Strøm-Tejsen P; Space D; Beauchamp J; Hansel A; Märk TD; Weschler CJ
    Environ Sci Technol; 2005 Jul; 39(13):4823-32. PubMed ID: 16053080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial studies of oxidation processes on filter surfaces and their impact on perceived air quality.
    Bekö G; Halás O; Clausen G; Weschler CJ
    Indoor Air; 2006 Feb; 16(1):56-64. PubMed ID: 16420498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.