These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9798863)

  • 21. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping.
    Kilner PJ; Yang GZ; Mohiaddin RH; Firmin DN; Longmore DB
    Circulation; 1993 Nov; 88(5 Pt 1):2235-47. PubMed ID: 8222118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascending-descending aortic bypass surgery in aortic arch coarctation: four-dimensional magnetic resonance flow analysis.
    Frydrychowicz A; Schlensak C; Stalder A; Russe M; Siepe M; Beyersdorf F; Langer M; Hennig J; Markl M
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):260-2. PubMed ID: 17198828
    [No Abstract]   [Full Text] [Related]  

  • 24. Flow in the thoracic aorta.
    Farthing S; Peronneau P
    Cardiovasc Res; 1979 Nov; 13(11):607-20. PubMed ID: 519664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of normal renal artery blood flow: cine phase-contrast MR imaging vs clearance of p-aminohippurate.
    Wolf RL; King BF; Torres VE; Wilson DM; Ehman RL
    AJR Am J Roentgenol; 1993 Nov; 161(5):995-1002. PubMed ID: 8273644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo.
    Pedersen EM; Oyre S; Agerbaek M; Kristensen IB; Ringgaard S; Boesiger P; Paaske WP
    Eur J Vasc Endovasc Surg; 1999 Oct; 18(4):328-33. PubMed ID: 10550268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic resonance assessment of aortic pulse wave velocity, aortic distensibility, and cardiac function in uncomplicated type 2 diabetes mellitus.
    van der Meer RW; Diamant M; Westenberg JJ; Doornbos J; Bax JJ; de Roos A; Lamb HJ
    J Cardiovasc Magn Reson; 2007; 9(4):645-51. PubMed ID: 17578719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of MR imaging in the evaluation of acquired diseases of the thoracic aorta.
    Link KM; Lesko NM
    AJR Am J Roentgenol; 1992 May; 158(5):1115-25. PubMed ID: 1566678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog.
    Banerjee RK; Back LH; Cho YI
    Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow velocity and turbulence in the transverse aorta of a proximally directed aortic cannula: hydrodynamic study in a transparent model.
    Fukuda I; Fujimori S; Daitoku K; Yanaoka H; Inamura T
    Ann Thorac Surg; 2009 Jun; 87(6):1866-71. PubMed ID: 19463611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques.
    Stokholm R; Oyre S; Ringgaard S; Flaagoy H; Paaske WP; Pedersen EM
    Eur J Vasc Endovasc Surg; 2000 Nov; 20(5):427-33. PubMed ID: 11112460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid aortic wave velocity measurement with MR imaging.
    Itskovich VV; Kraft KA; Fei DY
    Radiology; 2001 May; 219(2):551-7. PubMed ID: 11323487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta.
    Oyre S; Pedersen EM; Ringgaard S; Boesiger P; Paaske WP
    Eur J Vasc Endovasc Surg; 1997 Mar; 13(3):263-71. PubMed ID: 9129599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
    Moore JE; Xu C; Glagov S; Zarins CK; Ku DN
    Atherosclerosis; 1994 Oct; 110(2):225-40. PubMed ID: 7848371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [MR-based tridirectional flow imaging. Acquisition and 3D analysis of flows in the thoracic aorta].
    Unterhinninghofen R; Ley S; Frydrychowicz A; Markl M
    Radiologe; 2007 Nov; 47(11):1012-20. PubMed ID: 17932640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wall shear stress and early atherosclerosis: a review.
    Shaaban AM; Duerinckx AJ
    AJR Am J Roentgenol; 2000 Jun; 174(6):1657-65. PubMed ID: 10845502
    [No Abstract]   [Full Text] [Related]  

  • 40. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease.
    Bogren HG; Mohiaddin RH; Kilner PJ; Jimenez-Borreguero LJ; Yang GZ; Firmin DN
    J Magn Reson Imaging; 1997; 7(5):784-93. PubMed ID: 9307902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.