These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 9799115)
1. Purification and characterization of a flavoprotein involved in the degradation of epoxyalkanes by Xanthobacter Py2. Westphal AH; Swaving J; Jacobs L; De Kok A Eur J Biochem; 1998 Oct; 257(1):160-8. PubMed ID: 9799115 [TBL] [Abstract][Full Text] [Related]
2. A novel type of pyridine nucleotide-disulfide oxidoreductase is essential for NAD+- and NADPH-dependent degradation of epoxyalkanes by Xanthobacter strain Py2. Swaving J; de Bont JA; Westphal A; de Kok A J Bacteriol; 1996 Nov; 178(22):6644-6. PubMed ID: 8932325 [TBL] [Abstract][Full Text] [Related]
3. Characterization of three protein components required for functional reconstitution of the epoxide carboxylase multienzyme complex from Xanthobacter strain Py2. Allen JR; Ensign SA J Bacteriol; 1997 May; 179(10):3110-5. PubMed ID: 9150202 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
6. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains. Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263 [TBL] [Abstract][Full Text] [Related]
7. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Knight K; Scrutton NS Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493 [TBL] [Abstract][Full Text] [Related]
8. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry. Wolthers KR; Scrutton NS Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604 [TBL] [Abstract][Full Text] [Related]
9. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system. Clark DD; Allen JR; Ensign SA Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609 [TBL] [Abstract][Full Text] [Related]
10. Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276. Allen JR; Ensign SA Biochemistry; 1999 Jan; 38(1):247-56. PubMed ID: 9890905 [TBL] [Abstract][Full Text] [Related]
11. Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. Fox B; Walsh CT J Biol Chem; 1982 Mar; 257(5):2498-503. PubMed ID: 6277900 [TBL] [Abstract][Full Text] [Related]
12. A sulfhydryl oxidase from chicken egg white. Hoober KL; Joneja B; White HB; Thorpe C J Biol Chem; 1996 Nov; 271(48):30510-6. PubMed ID: 8940019 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of two components of epoxypropane isomerase/carboxylase from Xanthobacter Py2. Chion CK; Leak DJ Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):499-506. PubMed ID: 8912687 [TBL] [Abstract][Full Text] [Related]
14. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
15. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
16. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
17. Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. Sahlman L; Lambeir AM; Lindskog S Eur J Biochem; 1986 May; 156(3):479-88. PubMed ID: 3084255 [TBL] [Abstract][Full Text] [Related]
18. Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry. Distefano MD; Au KG; Walsh CT Biochemistry; 1989 Feb; 28(3):1168-83. PubMed ID: 2653436 [TBL] [Abstract][Full Text] [Related]
19. The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. Sahlman L; Lambeir AM; Lindskog S; Dunford HB J Biol Chem; 1984 Oct; 259(20):12403-8. PubMed ID: 6436233 [TBL] [Abstract][Full Text] [Related]
20. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Shen AL; Kasper CB Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]