These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9799190)

  • 61. Indoor air pollutants in office environments: assessment of comfort, health, and performance.
    Wolkoff P
    Int J Hyg Environ Health; 2013 Jul; 216(4):371-94. PubMed ID: 22954455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds.
    Bakand S; Winder C; Khalil C; Hayes A
    J Environ Monit; 2006 Jan; 8(1):100-5. PubMed ID: 16395465
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea.
    Bae H; Yang W; Chung M
    Sci Total Environ; 2004 May; 323(1-3):99-105. PubMed ID: 15081720
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain.
    Parra MA; González L; Elustondo D; Garrigó J; Bermejo R; Santamaría JM
    Sci Total Environ; 2006 Oct; 370(1):157-67. PubMed ID: 16899278
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ambient, indoor and personal exposure relationships of volatile organic compounds in Mexico City Metropolitan Area.
    Serrano-Trespalacios PI; Ryan L; Spengler JD
    J Expo Anal Environ Epidemiol; 2004; 14 Suppl 1():S118-32. PubMed ID: 15118753
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Detection rates, trends in and factors affecting observed levels of selected volatile organic compounds in blood among US adolescents and adults.
    Jain RB
    Environ Toxicol Pharmacol; 2017 Dec; 56():21-28. PubMed ID: 28869856
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Personal, indoor, and outdoor exposure to VOCs in the immediate vicinity of a local airport.
    Jung KH; Artigas F; Shin JY
    Environ Monit Assess; 2011 Feb; 173(1-4):555-67. PubMed ID: 20237839
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production.
    Tsai JH; Huang YS; Shieh ZX; Chiang HL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):540-51. PubMed ID: 21469015
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Conversely exposure-related effects between atmospheric m-xylene concentrations and human body sense of balance.
    Savolainen K; Riihimäki V; Muona O; Kekoni J; Luukkonen R; Laine A
    Acta Pharmacol Toxicol (Copenh); 1985 Aug; 57(2):67-71. PubMed ID: 4061091
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantification of chemical vapors in chemosensory research.
    Cometto-Muñiz JE; Cain WS; Abraham MH
    Chem Senses; 2003 Jul; 28(6):467-77. PubMed ID: 12907584
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Association between volatile organic compounds and serum neurofilament light chain in US adults.
    Bi Z; Meng Y; Ji Q; Zhang A; Liu M; Xu X; Zhan Y
    Sci Total Environ; 2024 May; 926():171893. PubMed ID: 38531449
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computer-based bioassay for evaluation of sensory irritation of airborne chemicals and its limit of detection.
    Alarie Y
    Arch Toxicol; 1998 Apr; 72(5):277-82. PubMed ID: 9630013
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Irritation effects from experimental exposure to n-butyl acetate.
    Iregren A; Löf A; Toomingas A; Wang Z
    Am J Ind Med; 1993 Dec; 24(6):727-42. PubMed ID: 8311103
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure-activity relationships of volatile organic chemicals as sensory irritants.
    Alarie Y; Schaper M; Nielsen GD; Abraham MH
    Arch Toxicol; 1998 Feb; 72(3):125-40. PubMed ID: 9520136
    [TBL] [Abstract][Full Text] [Related]  

  • 75. THE INFLUENCE OF SOME IRRITANT CHEMICALS AND SCARIFICATION ON TUMOUR INITIATION BY URETHANE IN MICE.
    POUND AW; WITHERS HR
    Br J Cancer; 1963 Sep; 17(3):460-70. PubMed ID: 14062492
    [No Abstract]   [Full Text] [Related]  

  • 76. [Clinical evaluation of the symptomatology caused by acetates, sylol and toluol].
    VARETTO L; FURNO F
    Folia Med (Napoli); 1963 Apr; 46():298-301. PubMed ID: 13996297
    [No Abstract]   [Full Text] [Related]  

  • 77. Comparison of two stimulus-delivery systems for measurement of nasal pungency thresholds.
    Cometto-Muñiz JE; Cain WS; Hiraishi T; Abraham MH; Gola JM
    Chem Senses; 2000 Jun; 25(3):285-91. PubMed ID: 10866987
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A theoretical approach to the Ferguson principle and its use with non-reactive and reactive airborne chemicals.
    Alarie Y; Nielsen GD; Abraham MH
    Pharmacol Toxicol; 1998 Dec; 83(6):270-9. PubMed ID: 9868746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The biological and toxicological activity of gases and vapors.
    Abraham MH; Sánchez-Moreno R; Gil-Lostes J; Acree WE; Cometto-Muñiz JE; Cain WS
    Toxicol In Vitro; 2010 Mar; 24(2):357-62. PubMed ID: 19913608
    [TBL] [Abstract][Full Text] [Related]  

  • 80. IMPURITIES IN ANALYTICAL REAGENT GRADE CHEMICALS.
    HOEGFELDT E
    J Chromatogr; 1963 Sep; 12():112-3. PubMed ID: 14066500
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.