BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9799276)

  • 1. Extreme structural heterogeneity among the members of a maize retrotransposon family.
    Marillonnet S; Wessler SR
    Genetics; 1998 Nov; 150(3):1245-56. PubMed ID: 9799276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
    Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL
    PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and evolution of the Cinful retrotransposon family of maize.
    Sanz-Alferez S; SanMiguel P; Jin YK; Springer PS; Bennetzen JL
    Genome; 2003 Oct; 46(5):745-52. PubMed ID: 14608391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome.
    Meyers BC; Tingey SV; Morgante M
    Genome Res; 2001 Oct; 11(10):1660-76. PubMed ID: 11591643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The paleontology of intergene retrotransposons of maize.
    SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL
    Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm.
    Liu Z; Li X; Wang T; Messing J; Xu JH
    G3 (Bethesda); 2015 May; 5(8):1585-92. PubMed ID: 26019188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis.
    Ghonaim M; Kalendar R; Barakat H; Elsherif N; Ashry N; Schulman AH
    Mol Biol Rep; 2020 Mar; 47(3):1589-1603. PubMed ID: 31919750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the evolution of the grande retrotransposon in the zea genus.
    García-Martínez J; Martínez-Izquierdo JA
    Mol Biol Evol; 2003 May; 20(5):831-41. PubMed ID: 12679538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species.
    Manetti ME; Rossi M; Nakabashi M; Grandbastien MA; Van Sluys MA
    Mol Genet Genomics; 2009 Mar; 281(3):261-71. PubMed ID: 19093134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.
    Wright DA; Voytas DF
    Genetics; 1998 Jun; 149(2):703-15. PubMed ID: 9611185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of DNA sequence nonhomologies among maize inbreds.
    Brunner S; Fengler K; Morgante M; Tingey S; Rafalski A
    Plant Cell; 2005 Feb; 17(2):343-60. PubMed ID: 15659640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus.
    Wang Q; Dooner HK
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17644-9. PubMed ID: 17101975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions.
    Dooner HK; Wang Q; Huang JT; Li Y; He L; Xiong W; Du C
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10734-10743. PubMed ID: 30992374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome.
    Schmidt T; Kubis S; Heslop-Harrison JS
    Chromosome Res; 1995 Sep; 3(6):335-45. PubMed ID: 7551548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unusual
    Wang Q; Huang J; Li Y; Dooner HK
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):18091-18098. PubMed ID: 32661148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spreading of heterochromatin is limited to specific families of maize retrotransposons.
    Eichten SR; Ellis NA; Makarevitch I; Yeh CT; Gent JI; Guo L; McGinnis KM; Zhang X; Schnable PS; Vaughn MW; Dawe RK; Springer NM
    PLoS Genet; 2012; 8(12):e1003127. PubMed ID: 23271981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome.
    Moisy C; Garrison KE; Meredith CP; Pelsy F
    BMC Genomics; 2008 Oct; 9():469. PubMed ID: 18842156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What makes Grande1 retrotransposon different?
    Martínez-Izquierdo JA; García-Martínez J; Vicient CM
    Genetica; 1997; 100(1-3):15-28. PubMed ID: 9440255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.