BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9799360)

  • 1. Gene-conversion tract directionality is influenced by the chromosome environment.
    Cho JW; Khalsa GJ; Nickoloff JA
    Curr Genet; 1998 Oct; 34(4):269-79. PubMed ID: 9799360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality.
    Nelson HH; Sweetser DB; Nickoloff JA
    Mol Cell Biol; 1996 Jun; 16(6):2951-7. PubMed ID: 8649406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.
    Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA
    Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events.
    Weng YS; Whelden J; Gunn L; Nickoloff JA
    Curr Genet; 1996 Mar; 29(4):335-43. PubMed ID: 8598054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.
    Nickoloff JA; Sweetser DB; Clikeman JA; Khalsa GJ; Wheeler SL
    Genetics; 1999 Oct; 153(2):665-79. PubMed ID: 10511547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional effects on double-strand break-induced gene conversion tracts.
    Weng YS; Xing D; Clikeman JA; Nickoloff JA
    Mutat Res; 2000 Oct; 461(2):119-32. PubMed ID: 11018585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional.
    Palmer S; Schildkraut E; Lazarin R; Nguyen J; Nickoloff JA
    Nucleic Acids Res; 2003 Feb; 31(4):1164-73. PubMed ID: 12582235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.
    Weng YS; Nickoloff JA
    Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marker structure and recombination substrate environment influence conversion preference of broken and unbroken alleles in Saccharomyces cerevisiae.
    Weng Y; Barton SL; Cho JW; Nickoloff JA
    Mol Genet Genomics; 2001 May; 265(3):461-8. PubMed ID: 11405629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells.
    Taghian DG; Nickoloff JA
    Mol Cell Biol; 1997 Nov; 17(11):6386-93. PubMed ID: 9343400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54.
    Kim PM; Paffett KS; Solinger JA; Heyer WD; Nickoloff JA
    Nucleic Acids Res; 2002 Jul; 30(13):2727-35. PubMed ID: 12087154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair.
    Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA
    Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1.
    Rattray AJ; McGill CB; Shafer BK; Strathern JN
    Genetics; 2001 May; 158(1):109-22. PubMed ID: 11333222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates.
    Fasullo M; Bennett T; Dave P
    Mutat Res; 1999 Jan; 433(1):33-44. PubMed ID: 10047777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.
    Jessop L; Allers T; Lichten M
    Genetics; 2005 Mar; 169(3):1353-67. PubMed ID: 15654098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing.
    Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA
    Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.
    Signon L; Malkova A; Naylor ML; Klein H; Haber JE
    Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction-stimulated homologous recombination of plasmids by the RecE pathway of Escherichia coli.
    Nussbaum A; Shalit M; Cohen A
    Genetics; 1992 Jan; 130(1):37-49. PubMed ID: 1732167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae.
    Wu TC; Lichten M
    Genetics; 1995 May; 140(1):55-66. PubMed ID: 7635308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.