These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9799469)

  • 1. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture.
    Schatten H; Hedrick J; Chakrabarti A
    Cell Tissue Res; 1998 Dec; 294(3):525-35. PubMed ID: 9799469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrosome and microtubule instability in aging Drosophila cells.
    Schatten H; Chakrabarti A; Hedrick J
    J Cell Biochem; 1999 Aug; 74(2):229-41. PubMed ID: 10404393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells.
    Schatten H; Lewis ML; Chakrabarti A
    Acta Astronaut; 2001; 49(3-10):399-418. PubMed ID: 11669127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleomorphism of human prostatic cancer cells (DU 145) in culture--the role of cytoskeleton.
    Chakraborty J; Von Stein GA
    Exp Mol Pathol; 1986 Apr; 44(2):235-45. PubMed ID: 3699142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of reendothelialization: the importance of endothelial microfilaments, microtubules and centrosomes in endothelial locomotion.
    Wong MK; Gotlieb AI
    Surv Synth Pathol Res; 1985; 4(5-6):341-56. PubMed ID: 3837928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live analysis of free centrosomes in normal and aphidicolin-treated Drosophila embryos.
    Debec A; Kalpin RF; Daily DR; McCallum PD; Rothwell WF; Sullivan W
    J Cell Biol; 1996 Jul; 134(1):103-15. PubMed ID: 8698807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organization of microtubules and microfilaments in larval and adult salivary glands of Drosophila melanogaster.
    Riparbelli MG; Callaini G; Dallai R
    Tissue Cell; 1993 Oct; 25(5):751-62. PubMed ID: 8296309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and microtubule-nucleation activity of isolated Drosophila embryo centrosomes characterized by whole mount scanning and transmission electron microscopy.
    Lange BM; Kirfel G; Gestmann I; Herzog V; González C
    Histochem Cell Biol; 2005 Sep; 124(3-4):325-34. PubMed ID: 16091939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein 4.1R regulates interphase microtubule organization at the centrosome.
    Pérez-Ferreiro CM; Vernos I; Correas I
    J Cell Sci; 2004 Dec; 117(Pt 25):6197-206. PubMed ID: 15564380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization.
    Stevenson VA; Kramer J; Kuhn J; Theurkauf WE
    Nat Cell Biol; 2001 Jan; 3(1):68-75. PubMed ID: 11146628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of the Cytoskeleton Using Live and Fixed Drosophila Tissue Culture Cells.
    Applewhite DA; Lacy CA; Griffis ER; Quintero-Carmona OA
    Methods Mol Biol; 2022; 2364():159-173. PubMed ID: 34542853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth of Drosophila bristles and laterals is not restricted to the tip or base.
    Fei X; He B; Adler PN
    J Cell Sci; 2002 Oct; 115(Pt 19):3797-806. PubMed ID: 12235290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of microtubules and microfilaments in centrosome dynamics during the syncytial mitoses of the early Drosophila embryo.
    Callaini G; Riparbelli MG
    Exp Cell Res; 1992 Jul; 201(1):241-4. PubMed ID: 1612126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic ordering of nuclei in syncytial embryos: a quantitative analysis of the role of cytoskeletal networks.
    Kanesaki T; Edwards CM; Schwarz US; Grosshans J
    Integr Biol (Camb); 2011 Nov; 3(11):1112-9. PubMed ID: 22001900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of microtubules and microfilaments of the epididymal epithelial cells in 17beta-estradiol synthesis.
    Marchlewicz M; Wiszniewska B; Kurzawa R; Wenda-Rózewicka L
    Folia Histochem Cytobiol; 2004; 42(1):19-27. PubMed ID: 15046396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Pseudomonas aeruginosa influence on the cytoskeleton of Hep-2 cells.
    Zanetti S; Fiori PL; Monaco G; Cappuccinelli P
    Microbiologica; 1986 Oct; 9(4):455-60. PubMed ID: 3095609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro reconstitution of dynamic microtubules interacting with actin filament networks.
    Preciado López M; Huber F; Grigoriev I; Steinmetz MO; Akhmanova A; Dogterom M; Koenderink GH
    Methods Enzymol; 2014; 540():301-20. PubMed ID: 24630114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural interaction of cytoskeletal components.
    Schliwa M; van Blerkom J
    J Cell Biol; 1981 Jul; 90(1):222-35. PubMed ID: 7019221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.