These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9799498)

  • 1. Simultaneous measurement of spectroscopic and physiological signals from a planar bilayer system: detecting voltage-dependent movement of a membrane-incorporated peptide.
    Hanyu Y; Yamada T; Matsumoto G
    Biochemistry; 1998 Nov; 37(44):15376-82. PubMed ID: 9799498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation and porin-like channel activity of a beta sheet peptide.
    Thundimadathil J; Roeske RW; Jiang HY; Guo L
    Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel.
    Shinozaki K; Anzai K; Kirino Y; Lee S; Aoyagi H
    Biochem Biophys Res Commun; 1994 Jan; 198(2):445-50. PubMed ID: 8297354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement.
    Chanda B; Asamoah OK; Blunck R; Roux B; Bezanilla F
    Nature; 2005 Aug; 436(7052):852-6. PubMed ID: 16094369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Cl(-)-channel from rabbit transverse tubules in the planar lipid bilayer system.
    Hidaka J; Ide T; Kawasaki T; Taguchi T; Kasai M
    Biochem Biophys Res Commun; 1993 Mar; 191(3):977-82. PubMed ID: 8385458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting pentobarbitone actions on single voltage-gated sodium channels.
    Duch DS; Wartenberg HC; Urban BW
    Eur J Anaesthesiol; 1995 Jan; 12(1):71-81. PubMed ID: 7705329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prion peptide forms ion channels in planar lipid bilayers.
    Berest V; Rutkowski M; Rolka K; Łegowska A; Debska G; Stepkowski D; Szewczyk A
    Cell Mol Biol Lett; 2003; 8(2):353-62. PubMed ID: 12813570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant human voltage-gated skeletal muscle sodium channels are pharmacologically functional in planar lipid bilayers.
    Zhang YL; Dunlop J; Dalziel JE
    Biosens Bioelectron; 2007 Jan; 22(6):1006-12. PubMed ID: 16713241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and modulation of alpha human atrial natriuretic peptide (alpha-hANP)-formed ion channels.
    Kourie JI; Hanna EA; Henry CL
    Can J Physiol Pharmacol; 2001 Aug; 79(8):654-64. PubMed ID: 11558674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, function, and modification of the voltage sensor in voltage-gated ion channels.
    Börjesson SI; Elinder F
    Cell Biochem Biophys; 2008; 52(3):149-74. PubMed ID: 18989792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.
    Phung T; Zhang Y; Dunlop J; Dalziel J
    Biosens Bioelectron; 2011 Mar; 26(7):3127-35. PubMed ID: 21211957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review).
    Latorre R; Muñoz F; González C; Cosmelli D
    Mol Membr Biol; 2003; 20(1):19-25. PubMed ID: 12745922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system for the determination of planar lipid bilayer breakdown voltage and its applications.
    Kramar P; Miklavcic D; Lebar AM
    IEEE Trans Nanobioscience; 2009 Jun; 8(2):132-8. PubMed ID: 19457754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism.
    Zhang P; Sigworth FJ; Canessa CM
    J Gen Physiol; 2006 Feb; 127(2):109-17. PubMed ID: 16418400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels.
    Ide T; Yanagida T
    Biochem Biophys Res Commun; 1999 Nov; 265(2):595-9. PubMed ID: 10558915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high conductance cationic channel from Phaseolus vulgaris roots incorporated into planar lipid bilayers.
    Balleza D; Gómez-Lagunas F; Sánchez F; Quinto C
    Arch Biochem Biophys; 2005 Jun; 438(1):88-92. PubMed ID: 15885652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ionic channels formed in the lipid bilayer membranes by aureofuscin, a polyene antibiotics].
    Shi YL; Wang WP; Zou YC
    Sheng Li Xue Bao; 1991 Apr; 43(2):128-33. PubMed ID: 1712513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic peptide forms voltage-gated porin-like ion channels in lipid bilayer membranes.
    Thundimadathil J; Roeske RW; Guo L
    Biochem Biophys Res Commun; 2005 May; 330(2):585-90. PubMed ID: 15796923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.