These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 9799522)
1. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis. Veine DM; Arscott LD; Williams CH Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522 [TBL] [Abstract][Full Text] [Related]
2. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila. Cheng Z; Arscott LD; Ballou DP; Williams CH Biochemistry; 2007 Jul; 46(26):7875-85. PubMed ID: 17550271 [TBL] [Abstract][Full Text] [Related]
3. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin. Picaud T; Desbois A Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105 [TBL] [Abstract][Full Text] [Related]
4. Role of active site tyrosine residues in catalysis by human glutathione reductase. Krauth-Siegel RL; Arscott LD; Schönleben-Janas A; Schirmer RH; Williams CH Biochemistry; 1998 Oct; 37(40):13968-77. PubMed ID: 9760231 [TBL] [Abstract][Full Text] [Related]
5. [The relation of glutathione reductase and diaphorase activity of glutathione reductase from Saccharomyces cerevisiae]. Chenas NK; Rakauskene GA; Kulis IuIu Biokhimiia; 1989 Jul; 54(7):1090-7. PubMed ID: 2679896 [TBL] [Abstract][Full Text] [Related]
6. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
7. Acid-base catalysis in the mechanism of thioredoxin reductase from Drosophila melanogaster. Huang HH; Arscott LD; Ballou DP; Williams CH Biochemistry; 2008 Feb; 47(6):1721-31. PubMed ID: 18211101 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Lennon BW; Williams CH Biochemistry; 1996 Apr; 35(15):4704-12. PubMed ID: 8664260 [TBL] [Abstract][Full Text] [Related]
9. Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Argyrou A; Sun G; Palfey BA; Blanchard JS Biochemistry; 2003 Feb; 42(7):2218-28. PubMed ID: 12590611 [TBL] [Abstract][Full Text] [Related]
10. Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides. Hopkins N; Williams CH Biochemistry; 1995 Sep; 34(37):11766-76. PubMed ID: 7547909 [TBL] [Abstract][Full Text] [Related]
11. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
12. Function of Glu-469' in the acid-base catalysis of thioredoxin reductase from Drosophila melanogaster. Huang HH; Arscott LD; Ballou DP; Williams CH Biochemistry; 2008 Dec; 47(48):12769-76. PubMed ID: 18991392 [TBL] [Abstract][Full Text] [Related]
13. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V; Holden MJ; Vilker VL Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648 [TBL] [Abstract][Full Text] [Related]
14. Oxidation-reduction properties of two engineered redox-sensitive mutant Escherichia coli malate dehydrogenases. Setterdahl A; Hirasawa M; Bucher LM; Dholakia CA; Jacquot P; Yards H; Miller F; Stevens FJ; Knaff DB; Anderson LE Arch Biochem Biophys; 2000 Oct; 382(1):15-21. PubMed ID: 11051092 [TBL] [Abstract][Full Text] [Related]
15. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393 [TBL] [Abstract][Full Text] [Related]
16. Regulation of oxidation-reduction potentials through redox-linked ionization in the Y98H mutant of the Desulfovibrio vulgaris [Hildenborough] flavodoxin: direct proton nuclear magnetic resonance spectroscopic evidence for the redox-dependent shift in the pKa of Histidine-98. Chang FC; Swenson RP Biochemistry; 1997 Jul; 36(29):9013-21. PubMed ID: 9220989 [TBL] [Abstract][Full Text] [Related]
17. The CXXC motif: a rheostat in the active site. Chivers PT; Prehoda KE; Raines RT Biochemistry; 1997 Apr; 36(14):4061-6. PubMed ID: 9099998 [TBL] [Abstract][Full Text] [Related]
18. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Barber MJ; Trimboli AJ; Nomikos S; Smith ET Arch Biochem Biophys; 1997 Sep; 345(1):88-96. PubMed ID: 9281315 [TBL] [Abstract][Full Text] [Related]