These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 9799566)

  • 41. Modulation of diamide toxicity in thermotolerant cells by inhibition of protein synthesis.
    Freeman ML; Meredith MJ
    Cancer Res; 1989 Aug; 49(16):4493-8. PubMed ID: 2743338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery.
    Préville X; Salvemini F; Giraud S; Chaufour S; Paul C; Stepien G; Ursini MV; Arrigo AP
    Exp Cell Res; 1999 Feb; 247(1):61-78. PubMed ID: 10047448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thioredoxin-dependent peroxide reductase from yeast.
    Chae HZ; Chung SJ; Rhee SG
    J Biol Chem; 1994 Nov; 269(44):27670-8. PubMed ID: 7961686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Yeast thiol-dependent protector protein expression enhances the resistance of Escherichia coli to hydrogen peroxide.
    Ahn SM; Lee SM; Chung T; Kim K; Park JW
    Biochem Mol Biol Int; 1996 Aug; 39(5):1007-15. PubMed ID: 8866018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.
    Moraitis C; Curran BP
    Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai.
    Wu C; Zhang W; Mai K; Xu W; Zhong X
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jun; 154(1):1-6. PubMed ID: 21406247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast.
    Galego L; Barahona I; Alves AP; Vreken P; Raué HA; Planta RJ; Rodrigues-Pousada C
    Yeast; 1993 Jun; 9(6):583-8. PubMed ID: 8346674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermosensitive phenotype of Escherichia coli mutant lacking NADP+-dependent isocitrate dehydrogenase.
    Choi IY; Sup KI; Kim HJ; Park JW
    Redox Rep; 2003; 8(1):51-6. PubMed ID: 12631445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae.
    Park SG; Cha MK; Jeong W; Kim IH
    J Biol Chem; 2000 Feb; 275(8):5723-32. PubMed ID: 10681558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase.
    Kwatia MA; Botkin DJ; Williams DL
    J Parasitol; 2000 Oct; 86(5):908-15. PubMed ID: 11128509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A thiol-specific antioxidant and sequence homology to various proteins of unknown function.
    Chae HZ; Rhee SG
    Biofactors; 1994 May; 4(3-4):177-80. PubMed ID: 7916964
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protective role of superoxide dismutases against ionizing radiation in yeast.
    Lee JH; Choi IY; Kil IS; Kim SY; Yang ES; Park JW
    Biochim Biophys Acta; 2001 May; 1526(2):191-8. PubMed ID: 11325541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular and biochemical modulation of heat shock protein 20 (Hsp20) gene by temperature stress and hydrogen peroxide (H₂O₂) in the monogonont rotifer, Brachionus sp.
    Rhee JS; Kim RO; Choi HG; Lee J; Lee YM; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jun; 154(1):19-27. PubMed ID: 21377541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate.
    Bentley NJ; Fitch IT; Tuite MF
    Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides.
    Garrido EO; Grant CM
    Mol Microbiol; 2002 Feb; 43(4):993-1003. PubMed ID: 11929546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thioredoxin peroxidase (natural killer enhancing factor) regulation of activator protein-1 function in endothelial cells.
    Shau H; Huang AC; Faris M; Nazarian R; de Vellis J; Chen W
    Biochem Biophys Res Commun; 1998 Aug; 249(3):683-6. PubMed ID: 9731197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of antioxidant properties of natural killer-enhancing factor-B and induction of its expression by hydrogen peroxide.
    Kim AT; Sarafian TA; Shau H
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):135-42. PubMed ID: 9356316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Biochem Biophys Res Commun; 1996 Mar; 220(3):766-72. PubMed ID: 8607839
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of the heat shock protein of Neurospora crassa corresponding to the stress-inducible peroxidase.
    Machwe A; Kapoor M
    Biochem Biophys Res Commun; 1993 Oct; 196(2):692-8. PubMed ID: 8240345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.