These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 9799643)
1. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips. Holmes DF; Graham HK; Kadler KE J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643 [TBL] [Abstract][Full Text] [Related]
2. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. Graham HK; Holmes DF; Watson RB; Kadler KE J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798 [TBL] [Abstract][Full Text] [Related]
3. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634 [TBL] [Abstract][Full Text] [Related]
4. Growth of sea cucumber collagen fibrils occurs at the tips and centers in a coordinated manner. Trotter JA; Chapman JA; Kadler KE; Holmes DF J Mol Biol; 1998 Dec; 284(5):1417-24. PubMed ID: 9878360 [TBL] [Abstract][Full Text] [Related]
5. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends. Trotter JA; Kadler KE; Holmes DF J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349 [TBL] [Abstract][Full Text] [Related]
6. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Birk DE; Mayne R Eur J Cell Biol; 1997 Apr; 72(4):352-61. PubMed ID: 9127735 [TBL] [Abstract][Full Text] [Related]
7. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518 [TBL] [Abstract][Full Text] [Related]
8. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Birk DE; Nurminskaya MV; Zycband EI Dev Dyn; 1995 Mar; 202(3):229-43. PubMed ID: 7780173 [TBL] [Abstract][Full Text] [Related]
9. Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Starborg T; Lu Y; Huffman A; Holmes DF; Kadler KE Scand J Med Sci Sports; 2009 Aug; 19(4):547-52. PubMed ID: 19422644 [TBL] [Abstract][Full Text] [Related]
10. Development of tendon structure and function: regulation of collagen fibrillogenesis. Zhang G; Young BB; Ezura Y; Favata M; Soslowsky LJ; Chakravarti S; Birk DE J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):5-21. PubMed ID: 15788867 [TBL] [Abstract][Full Text] [Related]
11. Enzymic control of collagen fibril shape. Holmes DF; Watson RB; Chapman JA; Kadler KE J Mol Biol; 1996 Aug; 261(2):93-7. PubMed ID: 8757278 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of genes associated with collagen fibril growth in the chicken tendon: identification of structural and regulatory genes by subtractive hybridization. Nurminskaya MV; Birk DE Arch Biochem Biophys; 1998 Feb; 350(1):1-9. PubMed ID: 9466813 [TBL] [Abstract][Full Text] [Related]
13. Assembly of the collagenous extracellular matrix during tendon development in the chicken limb. Birk DE; Zycband E Prog Clin Biol Res; 1993; 383B():523-32. PubMed ID: 8115369 [No Abstract] [Full Text] [Related]
14. Surface located procollagen N-propeptides on dermatosparactic collagen fibrils are not cleaved by procollagen N-proteinase and do not inhibit binding of decorin to the fibril surface. Watson RB; Holmes DF; Graham HK; Nusgens BV; Kadler KE J Mol Biol; 1998 Apr; 278(1):195-204. PubMed ID: 9571043 [TBL] [Abstract][Full Text] [Related]
15. Electron microscopy in cell-matrix research. Starborg T; Lu Y; Meadows RS; Kadler KE; Holmes DF Methods; 2008 May; 45(1):53-64. PubMed ID: 18442705 [TBL] [Abstract][Full Text] [Related]
16. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671 [TBL] [Abstract][Full Text] [Related]
17. Assembly of the tendon extracellular matrix during development. Birk DE; Zycband E J Anat; 1994 Jun; 184 ( Pt 3)(Pt 3):457-63. PubMed ID: 7928635 [TBL] [Abstract][Full Text] [Related]
18. Assembly in vitro of thin and thick fibrils of collagen II from recombinant procollagen II. The monomers in the tips of thick fibrils have the opposite orientation from monomers in the growing tips of collagen I fibrils. Fertala A; Holmes DF; Kadler KE; Sieron AL; Prockop DJ J Biol Chem; 1996 Jun; 271(25):14864-9. PubMed ID: 8662997 [TBL] [Abstract][Full Text] [Related]
19. Growth of collagen fibril seeds from embryonic tendon: fractured fibril ends nucleate new tip growth. Holmes DF; Tait A; Hodson NW; Sherratt MJ; Kadler KE J Mol Biol; 2010 May; 399(1):9-16. PubMed ID: 20385142 [TBL] [Abstract][Full Text] [Related]
20. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Provenzano PP; Vanderby R Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]