These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 9799667)

  • 21. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.
    Weininger U; Modig K; Akke M
    Biochemistry; 2014 Jul; 53(28):4519-25. PubMed ID: 24983918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence.
    Czapinska H; Otlewski J; Krzywda S; Sheldrick GM; Jaskólski M
    J Mol Biol; 2000 Feb; 295(5):1237-49. PubMed ID: 10653700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building on the WLF/free volume framework: utilization of the coupling model in the relaxation dynamics of the gelatin/cosolute system.
    Kasapis S
    Biomacromolecules; 2006 May; 7(5):1671-8. PubMed ID: 16677053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining a polarizable force-field and a coarse-grained polarizable solvent model: application to long dynamics simulations of bovine pancreatic trypsin inhibitor.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2008 Aug; 29(11):1707-24. PubMed ID: 18351600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of bovine pancreatic trypsin inhibitor to trypsinogen: spectroscopic and volumetric studies.
    Filfil R; Ratavosi A; Chalikian TV
    Biochemistry; 2004 Feb; 43(5):1315-22. PubMed ID: 14756568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52.
    Strandberg E; Westlund P
    J Magn Reson; 1999 Apr; 137(2):333-44. PubMed ID: 10089167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic analysis of hydration in human serum heme-albumin.
    Baroni S; Pariani G; Fanali G; Longo D; Ascenzi P; Aime S; Fasano M
    Biochem Biophys Res Commun; 2009 Jul; 385(3):385-9. PubMed ID: 19464261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internal water molecules and magnetic relaxation in agarose gels.
    Chavez FV; Persson E; Halle B
    J Am Chem Soc; 2006 Apr; 128(14):4902-10. PubMed ID: 16594727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relaxometric studies for food characterization: the case of balsamic and traditional balsamic vinegars.
    Baroni S; Consonni R; Ferrante G; Aime S
    J Agric Food Chem; 2009 Apr; 57(8):3028-32. PubMed ID: 19271710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of phospholipids on conformational structure of bovine pancreatic trypsin inhibitor (BPTI) and its thermolabile mutants.
    Izumikawa N; Nishikori S; Vestergaard M; Hamada T; Hagihara Y; Yumoto N; Shiraki K; Takagi M
    Biopolymers; 2008 Oct; 89(10):873-80. PubMed ID: 18521887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion, relaxation, and chemical exchange in casein gels: a nuclear magnetic resonance study.
    Gottwald A; Creamer LK; Hubbard PL; Callaghan PT
    J Chem Phys; 2005 Jan; 122(3):34506. PubMed ID: 15740208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution study of nuclear magnetic relaxation dispersion of purine nucleotides: effects of spin-spin coupling.
    Kiryutin A; Ivanov K; Yurkovskaya A; Vieth HM
    Solid State Nucl Magn Reson; 2008; 34(1-2):142-9. PubMed ID: 18424085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements.
    Kovrigin EL; Kempf JG; Grey MJ; Loria JP
    J Magn Reson; 2006 May; 180(1):93-104. PubMed ID: 16458551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decamers observed in the crystals of bovine pancreatic trypsin inhibitor.
    Lubkowski J; Wlodawer A
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):335-7. PubMed ID: 10089443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory.
    Schneider TR; Brünger AT; Nilges M
    J Mol Biol; 1999 Jan; 285(2):727-40. PubMed ID: 9878440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics in sodium poly (L-glutamate) aqueous solutions analyzed by means of the stretched exponential decay of the Williams-Watts function.
    Bordi F; Cametti C; Paradossi G
    Biopolymers; 1995 Oct; 36(4):539-45. PubMed ID: 7578947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligomerization and conformation change in solutions of calf lens gamma II-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH; Beaulieu CF; Brown RD; Spiller M
    Biophys J; 1990 Mar; 57(3):461-9. PubMed ID: 2306495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.