These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9799806)

  • 1. LDL oxidation by activated monocytes: characterization of the oxidized LDL and requirement for transition metal ions.
    Xing X; Baffic J; Sparrow CP
    J Lipid Res; 1998 Nov; 39(11):2201-8. PubMed ID: 9799806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of dacron-activated monocytic cell oxidation of low density lipoprotein.
    van Aalst JA; Pitsch RJ; Absood A; Fox PL; Graham LM
    J Vasc Surg; 2000 Jan; 31(1 Pt 1):171-80. PubMed ID: 10642720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokine modulation of LDL oxidation by activated human monocytes.
    Folcik VA; Aamir R; Cathcart MK
    Arterioscler Thromb Vasc Biol; 1997 Oct; 17(10):1954-61. PubMed ID: 9351359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of PKC, superoxide anion production and LDL lipid peroxidation are not dependent on phosphoinositide-specific phospholipase C activity in U937 cells.
    Li Q; Cathcart MK
    J Lipid Mediat Cell Signal; 1997 Dec; 17(3):175-89. PubMed ID: 9524926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoprotein receptor interactions are not required for monocyte oxidation of LDL.
    Cathcart MK; Li Q; Chisolm GM
    J Lipid Res; 1995 Sep; 36(9):1857-65. PubMed ID: 8558074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin.
    Cathcart MK; McNally AK; Morel DW; Chisolm GM
    J Immunol; 1989 Mar; 142(6):1963-9. PubMed ID: 2537865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation.
    Li Q; Cathcart MK
    J Biol Chem; 1997 Jan; 272(4):2404-11. PubMed ID: 8999952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase calpha regulates human monocyte O-2 production and low density lipoprotein lipid oxidation.
    Li Q; Subbulakshmi V; Fields AP; Murray NR; Cathcart MK
    J Biol Chem; 1999 Feb; 274(6):3764-71. PubMed ID: 9920929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term exposure to oxidized low-density lipoprotein enhances tumor necrosis factor-alpha-stimulated endothelial adhesiveness of monocytes by activating superoxide generation and redox-sensitive pathways.
    Chen JW; Chen YH; Lin SJ
    Free Radic Biol Med; 2006 Mar; 40(5):817-26. PubMed ID: 16520234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative modification of low density lipoprotein (LDL) by activated human monocytes and the cell lines U937 and HL60.
    Cathcart MK; Chisolm GM; McNally AK; Morel DW
    In Vitro Cell Dev Biol; 1988 Oct; 24(10):1001-8. PubMed ID: 3182552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway.
    McNally AK; Chisolm GM; Morel DW; Cathcart MK
    J Immunol; 1990 Jul; 145(1):254-9. PubMed ID: 2162888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells.
    Ehrenwald E; Fox PL
    J Clin Invest; 1996 Feb; 97(3):884-90. PubMed ID: 8609249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL.
    Folcik VA; Cathcart MK
    J Lipid Res; 1994 Sep; 35(9):1570-82. PubMed ID: 7806971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LDL oxidized with iron in the presence of homocysteine/cystine at acidic pH has low cytotoxicity despite high lipid peroxidation.
    Pfanzagl B
    Atherosclerosis; 2006 Aug; 187(2):292-300. PubMed ID: 16256999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification.
    Hwang J; Wang J; Morazzoni P; Hodis HN; Sevanian A
    Free Radic Biol Med; 2003 May; 34(10):1271-82. PubMed ID: 12726915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
    Heinecke JW; Kawamura M; Suzuki L; Chait A
    J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-tocopherol supplementation of macrophages does not influence their ability to oxidize LDL.
    Baoutina A; Dean RT; Jessup W
    J Lipid Res; 1998 Jan; 39(1):114-30. PubMed ID: 9469591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocyte superoxide production is inversely related to normal content of alpha-tocopherol in low-density lipoprotein.
    Cachia O; Léger CL; Descomps B
    Atherosclerosis; 1998 Jun; 138(2):263-9. PubMed ID: 9690909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblasts that overexpress 15-lipoxygenase generate bioactive and minimally modified LDL.
    Sigari F; Lee C; Witztum JL; Reaven PD
    Arterioscler Thromb Vasc Biol; 1997 Dec; 17(12):3639-45. PubMed ID: 9437216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide initiates oxidation of low density lipoprotein by human monocytes.
    Hiramatsu K; Rosen H; Heinecke JW; Wolfbauer G; Chait A
    Arteriosclerosis; 1987; 7(1):55-60. PubMed ID: 3028347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.