These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9800064)

  • 21. Bacterial interactions with contact lenses; effects of lens material, lens wear and microbial physiology.
    Willcox MD; Harmis N; Cowell ; Williams T; Holden
    Biomaterials; 2001 Dec; 22(24):3235-47. PubMed ID: 11700795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of concurrent Pseudomonas or Xanthomonas exposure on adherence of Acanthamoeba castellanii to soft contact lenses.
    Kelly LD; Xu L
    Graefes Arch Clin Exp Ophthalmol; 1996 May; 234(5):311-4. PubMed ID: 8740252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro adhesion of Acanthamoeba castellanii to soft contact lenses depends on water content and disinfection procedure.
    Reverey JF; Fromme R; Leippe M; Selhuber-Unkel C
    Cont Lens Anterior Eye; 2014 Aug; 37(4):262-6. PubMed ID: 24361096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial transmission from contact lenses to porcine corneas: an ex vivo study.
    Vermeltfoort PB; van Kooten TG; Bruinsma GM; Hooymans AM; van der Mei HC; Busscher HJ
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2042-6. PubMed ID: 15914621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of enzymatic contact lens cleaning on adherence of Pseudomonas aeruginosa to soft contact lenses.
    Stern GA; Zam ZS
    Ophthalmology; 1987 Feb; 94(2):115-9. PubMed ID: 3106872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesive capabilities of Staphylococcus aureus and Pseudomonas aeruginosa isolated from tears of HIV/AIDS patients to soft contact lenses.
    Ajayi BO; Kio FE; Otajevwo FD
    Glob J Health Sci; 2012 Jan; 4(1):140-8. PubMed ID: 22980120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.
    Ji YW; Cho YJ; Lee CH; Hong SH; Chung DY; Kim EK; Lee HK
    Eye Contact Lens; 2015 Jan; 41(1):25-33. PubMed ID: 25536530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of cellular debris on Pseudomonas aeruginosa adherence to silicone hydrogel contact lenses and contact lens storage cases.
    Burnham GW; Cavanagh HD; Robertson DM
    Eye Contact Lens; 2012 Jan; 38(1):7-15. PubMed ID: 22138709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of Pseudomonas aeruginosa and Staphylococcus epidermidis in adhesion to a hydrogel.
    George M; Ahearn D; Pierce G; Gabriel M
    Eye Contact Lens; 2003 Jan; 29(1 Suppl):S105-9; discussion S115-8, S192-4. PubMed ID: 12772744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secretory phospholipase A2 deposition on contact lenses and its effect on bacterial adhesion.
    Hume EB; Cole N; Parmar A; Tan ME; Aliwarga Y; Schubert T; Holden BA; Willcox MD
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3161-4. PubMed ID: 15326135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion of Stenotrophomonas maltophilia, Delftia acidovorans, and Achromobacter xylosoxidans to Contact Lenses.
    Vijay AK; Willcox MDP
    Eye Contact Lens; 2018 Nov; 44 Suppl 2():S120-S126. PubMed ID: 28953600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attachment of Acanthamoeba to first- and second-generation silicone hydrogel contact lenses.
    Beattie TK; Tomlinson A; McFadyen AK
    Ophthalmology; 2006 Jan; 113(1):117-25. PubMed ID: 16360208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of octylglucoside and sodium cholate in Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to soft contact lenses.
    Santos L; Rodrigues D; Lira M; Oliveira R; Real Oliveira ME; Vilar EY; Azeredo J
    Optom Vis Sci; 2007 May; 84(5):429-34. PubMed ID: 17502827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between contact lens oxygen permeability and binding of Pseudomonas aeruginosa to human corneal epithelial cells after overnight and extended wear.
    Ren DH; Petroll WM; Jester JV; Ho-Fan J; Cavanagh HD
    CLAO J; 1999 Apr; 25(2):80-100. PubMed ID: 10344294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyphal penetration of worn hydrogel contact lenses by Fusarium.
    Ahearn DG; Zhang S; Ward MA; Simmons RB; Stulting RD
    Cornea; 2009 Sep; 28(8):914-7. PubMed ID: 19654522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adherence of Pseudomonas aeruginosa to shed rabbit corneal epithelial cells after overnight wear of contact lenses.
    Ren H; Petroll WM; Jester JV; Cavanagh HD; Mathers WD; Bonanno JA; Kennedy RH
    CLAO J; 1997 Jan; 23(1):63-8. PubMed ID: 9001775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses.
    Bruinsma GM; van der Mei HC; Busscher HJ
    Biomaterials; 2001 Dec; 22(24):3217-24. PubMed ID: 11700793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.
    Selan L; Palma S; Scoarughi GL; Papa R; Veeh R; Di Clemente D; Artini M
    Am J Ophthalmol; 2009 Jan; 147(1):134-9. PubMed ID: 18790470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple surface properties of worn RGP lenses and adhesion of Pseudomonas aeruginosa.
    Bruinsma GM; Rustema-Abbing M; de Vries J; Busscher HJ; van der Linden ML; Hooymans JM; van der Mei HC
    Biomaterials; 2003 Apr; 24(9):1663-70. PubMed ID: 12559826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-power microwave disinfection of soft contact lenses.
    Kastl PR; Maehara JR
    CLAO J; 2001 Apr; 27(2):81-3. PubMed ID: 11352453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.