These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9800949)

  • 21. CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis.
    Oliveira-dos-Santos AJ; Ho A; Tada Y; Lafaille JJ; Tonegawa S; Mak TW; Penninger JM
    J Immunol; 1999 Apr; 162(8):4490-5. PubMed ID: 10201986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system.
    Kipnis J; Mizrahi T; Hauben E; Shaked I; Shevach E; Schwartz M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15620-5. PubMed ID: 12429857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epicutaneously induced TGF-beta-dependent tolerance inhibits experimental autoimmune encephalomyelitis.
    Szczepanik M; Tutaj M; Bryniarski K; Dittel BN
    J Neuroimmunol; 2005 Jul; 164(1-2):105-14. PubMed ID: 15899524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: an effect of the novel anti-inflammatory drug lisofylline.
    Bright JJ; Du C; Coon M; Sriram S; Klaus SJ
    J Immunol; 1998 Dec; 161(12):7015-22. PubMed ID: 9862738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of proteolipid protein-peptide-specific CD(4)(+) T cell of experimental allergic encephalomyelitis in Biozzi AB/H mice.
    Peng Y; Liu CP
    Chin Med J (Engl); 2002 Apr; 115(4):521-4. PubMed ID: 12133288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral and pathological outcomes in MOG 35-55 experimental autoimmune encephalomyelitis.
    Jones MV; Nguyen TT; Deboy CA; Griffin JW; Whartenby KA; Kerr DA; Calabresi PA
    J Neuroimmunol; 2008 Aug; 199(1-2):83-93. PubMed ID: 18582952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental allergic encephalomyelitis: characterization of T lymphocytes that bind myelin basic protein and synapsin.
    De Santis ML; Roth GA
    J Neurosci Res; 1996 Jan; 43(1):50-4. PubMed ID: 8838573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual functional and histopathological correlation in experimental autoimmune optic neuritis.
    Matsunaga Y; Kezuka T; An X; Fujita K; Matsuyama N; Matsuda R; Usui Y; Yamakawa N; Kuroda M; Goto H
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):6964-71. PubMed ID: 22969072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic experimental allergic encephalomyelitis in inbred guinea pigs. An ultrastructural study.
    Raine CS; Snyder DH; Valsamis MP; Stone SH
    Lab Invest; 1974 Oct; 31(4):369-80. PubMed ID: 4137577
    [No Abstract]   [Full Text] [Related]  

  • 30. Alteration of T helper cell subsets in the optic nerve of experimental autoimmune encephalomyelitis.
    Tian AY; Zhang RW; Shi XG; Yu HM
    Int J Mol Med; 2010 Jun; 25(6):869-74. PubMed ID: 20428790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optic neuritis and chronic relapsing experimental allergic encephalomyelitis: relationship to clinical course and comparison with multiple sclerosis.
    Raine CS; Traugott U; Nussenblatt RB; Stone SH
    Lab Invest; 1980 Mar; 42(3):327-35. PubMed ID: 7189001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study of early pathological changes and axonal injury of optic nerve in experimental allergic encephalomyelitis mouse].
    Zhang RW; Chen L
    Zhonghua Yan Ke Za Zhi; 2010 Jul; 46(7):604-8. PubMed ID: 21054967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic experimental allergic optic neuritis.
    Rao NA
    Invest Ophthalmol Vis Sci; 1981 Feb; 20(2):159-72. PubMed ID: 6161902
    [No Abstract]   [Full Text] [Related]  

  • 34. Immunosuppressive effect of gramicidin S on experimental ocular neuritis and allergic encephalomyelitis.
    Matsushima S; Yoshitoshi T; Mahalak SM; Shichi H
    Jpn J Ophthalmol; 1990; 34(3):306-13. PubMed ID: 1706788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis.
    Gladue RP; Carroll LA; Milici AJ; Scampoli DN; Stukenbrok HA; Pettipher ER; Salter ED; Contillo L; Showell HJ
    J Exp Med; 1996 Apr; 183(4):1893-8. PubMed ID: 8666945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microvascular and cellular responses in the optic nerve of rats with acute experimental allergic encephalomyelitis (EAE).
    Hu P; Pollard J; Hunt N; Taylor J; Chan-Ling T
    Brain Pathol; 1998 Jul; 8(3):475-86. PubMed ID: 9669698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of experimental autoimmune optic neuritis by the novel agent fingolimod.
    An X; Kezuka T; Usui Y; Matsunaga Y; Matsuda R; Yamakawa N; Goto H
    J Neuroophthalmol; 2013 Jun; 33(2):143-8. PubMed ID: 23609767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive transfer studies in experimental allergic encephalomyelitis.
    Rauch HC; Griffin J
    Int Arch Allergy Appl Immunol; 1969; 36():Suppl:387-400. PubMed ID: 5373036
    [No Abstract]   [Full Text] [Related]  

  • 39. Experimental allergic encephalomyelitis. Passive transfer by the intraocular injection of sensitized cells.
    Wray SH; Cogan DG; Arnason BG
    Arch Neurol; 1976 Mar; 33(3):183-5. PubMed ID: 1252161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive transfer and labelling studies on the cell infiltrate in experimental allergic encephalomyelitis.
    Smith SB; Waksman BH
    J Pathol; 1969 Nov; 99(3):237-44. PubMed ID: 5387021
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.