BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9801073)

  • 1. Role of xanthine oxidase in hydrogen peroxide production.
    Lacy F; Gough DA; Schmid-Schönbein GW
    Free Radic Biol Med; 1998 Oct; 25(6):720-7. PubMed ID: 9801073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension.
    Lacy F; O'Connor DT; Schmid-Schönbein GW
    J Hypertens; 1998 Mar; 16(3):291-303. PubMed ID: 9557922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation and detoxification of trivalent arsenic species.
    Aposhian HV; Zakharyan RA; Avram MD; Kopplin MJ; Wollenberg ML
    Toxicol Appl Pharmacol; 2003 Nov; 193(1):1-8. PubMed ID: 14613711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli.
    Shah SV
    J Clin Invest; 1984 Aug; 74(2):393-401. PubMed ID: 6086713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system.
    Link EM; Riley PA
    Biochem J; 1988 Jan; 249(2):391-9. PubMed ID: 2829857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous xanthine oxidase-derived O2 metabolites inhibit surfactant metabolism.
    Baker RR; Panus PC; Holm BA; Engstrom PC; Freeman BA; Matalon S
    Am J Physiol; 1990 Oct; 259(4 Pt 1):L328-34. PubMed ID: 2221090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine oxidase-generated hydrogen peroxide is a consequence, not a mediator of cell death.
    Czupryna J; Tsourkas A
    FEBS J; 2012 Mar; 279(5):844-55. PubMed ID: 22230240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous xanthine oxidase does not significantly contribute to vascular endothelial production of reactive oxygen species.
    Paler-Martínez A; Panus PC; Chumley PH; Ryan U; Hardy MM; Freeman BA
    Arch Biochem Biophys; 1994 May; 311(1):79-85. PubMed ID: 8185323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system.
    Berman RS; Martin W
    Br J Pharmacol; 1993 Apr; 108(4):920-6. PubMed ID: 8485631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radical stimulation of tyrosine kinase and phosphatase activity in human peripheral blood mononuclear cells.
    Lowe GM; Hulley CE; Rhodes ES; Young AJ; Bilton RF
    Biochem Biophys Res Commun; 1998 Apr; 245(1):17-22. PubMed ID: 9535775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reactive oxygen metabolites on endothelial permeability: role of nitric oxide and iron.
    Okayama N; Grisham MB; Kevil CG; Eppihimer LA; Wink DA; Alexander JS
    Microcirculation; 1999 Jun; 6(2):107-16. PubMed ID: 10466113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat intestinal peroxidase: inhibition by endogenous xanthine and xanthine oxidase.
    Kimura S; Jellinck PH
    Arch Biochem Biophys; 1985 Aug; 241(1):141-8. PubMed ID: 3839643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes.
    Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC
    Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of reactive oxygen metabolites on erythropoietin production in renal carcinoma cells.
    Ueno M; Brookins J; Beckman BS; Fisher JW
    Biochem Biophys Res Commun; 1988 Jul; 154(2):773-80. PubMed ID: 3401235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of reactive oxygen intermediates in lipopolysaccharide-mediated hepatic injury in the rat.
    Takeyama N; Shoji Y; Ohashi K; Tanaka T
    J Surg Res; 1996 Jan; 60(1):258-62. PubMed ID: 8592424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.