BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 9801308)

  • 1. The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation.
    Hazra TK; Izumi T; Maidt L; Floyd RA; Mitra S
    Nucleic Acids Res; 1998 Nov; 26(22):5116-22. PubMed ID: 9801308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step.
    Vidal AE; Hickson ID; Boiteux S; Radicella JP
    Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair.
    Hill JW; Hazra TK; Izumi T; Mitra S
    Nucleic Acids Res; 2001 Jan; 29(2):430-8. PubMed ID: 11139613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of 8-oxoguanine and Ogg1-incised apurinic sites in a CHO cell line.
    Boiteux S; le Page F
    Prog Nucleic Acid Res Mol Biol; 2001; 68():95-105. PubMed ID: 11554315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA.
    Shinmura K; Yamaguchi S; Saitoh T; Takeuchi-Sasaki M; Kim SR; Nohmi T; Yokota J
    Nucleic Acids Res; 2000 Dec; 28(24):4912-8. PubMed ID: 11121482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA.
    Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S
    Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins.
    Pascucci B; Maga G; Hübscher U; Bjoras M; Seeberg E; Hickson ID; Villani G; Giordano C; Cellai L; Dogliotti E
    Nucleic Acids Res; 2002 May; 30(10):2124-30. PubMed ID: 12000832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian Ogg1/Mmh gene plays a major role in repair of the 8-hydroxyguanine lesion in DNA.
    Nishimura S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():107-23. PubMed ID: 11554290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
    Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E
    EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine.
    Larson ED; Iams K; Drummond JT
    DNA Repair (Amst); 2003 Nov; 2(11):1199-210. PubMed ID: 14599742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assays for the repair of oxidative damage by formamidopyrimidine glycosylase (Fpg) and 8-oxoguanine DNA glycosylase (OGG-1).
    Watson AJ; Margison GP
    Methods Mol Biol; 2000; 152():17-32. PubMed ID: 10957965
    [No Abstract]   [Full Text] [Related]  

  • 15. Response of base excision repair enzymes to complex DNA lesions.
    Weinfeld M; Rasouli-Nia A; Chaudhry MA; Britten RA
    Radiat Res; 2001 Nov; 156(5 Pt 2):584-9. PubMed ID: 11604076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. APE1-dependent repair of DNA single-strand breaks containing 3'-end 8-oxoguanine.
    Parsons JL; Dianova II; Dianov GL
    Nucleic Acids Res; 2005; 33(7):2204-9. PubMed ID: 15831793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of base excision repair are not solely dependent on levels of initiating enzymes.
    Cappelli E; Hazra T; Hill JW; Slupphaug G; Bogliolo M; Frosina G
    Carcinogenesis; 2001 Mar; 22(3):387-93. PubMed ID: 11238177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Envisioning the molecular choreography of DNA base excision repair.
    Parikh SS; Mol CD; Hosfield DJ; Tainer JA
    Curr Opin Struct Biol; 1999 Feb; 9(1):37-47. PubMed ID: 10047578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-oxoguanine DNA glycosylases: one lesion, three subfamilies.
    Faucher F; Doublié S; Jia Z
    Int J Mol Sci; 2012; 13(6):6711-6729. PubMed ID: 22837659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.