BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9801358)

  • 1. Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current.
    Ribera AB; Nüsslein-Volhard C
    J Neurosci; 1998 Nov; 18(22):9181-91. PubMed ID: 9801358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons.
    Pineda RH; Heiser RA; Ribera AB
    J Neurophysiol; 2005 Jun; 93(6):3582-93. PubMed ID: 15673553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability.
    Carmean V; Yonkers MA; Tellez MB; Willer JR; Willer GB; Gregg RG; Geisler R; Neuhauss SC; Ribera AB
    J Neurophysiol; 2015 Aug; 114(2):1146-57. PubMed ID: 26133798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation.
    Nakano Y; Fujita M; Ogino K; Saint-Amant L; Kinoshita T; Oda Y; Hirata H
    Development; 2010 May; 137(10):1689-98. PubMed ID: 20392743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation.
    Low SE; Zhou W; Choong I; Saint-Amant L; Sprague SM; Hirata H; Cui WW; Hume RI; Kuwada JY
    Dev Neurobiol; 2010 Jun; 70(7):508-22. PubMed ID: 20225246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scn1bb, a zebrafish ortholog of SCN1B expressed in excitable and nonexcitable cells, affects motor neuron axon morphology and touch sensitivity.
    Fein AJ; Wright MA; Slat EA; Ribera AB; Isom LL
    J Neurosci; 2008 Nov; 28(47):12510-22. PubMed ID: 19020043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure and developmental expression of zebrafish sodium channel Na(v)1.6 during neurogenesis.
    Tsai CW; Tseng JJ; Lin SC; Chang CY; Wu JL; Horng JF; Tsay HJ
    DNA Cell Biol; 2001 May; 20(5):249-55. PubMed ID: 11410161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study.
    Khaliq ZM; Gouwens NW; Raman IM
    J Neurosci; 2003 Jun; 23(12):4899-912. PubMed ID: 12832512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity regulates programmed cell death of zebrafish Rohon-Beard neurons.
    Svoboda KR; Linares AE; Ribera AB
    Development; 2001 Sep; 128(18):3511-20. PubMed ID: 11566856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons.
    Yonkers MA; Ribera AB
    Neural Dev; 2009 Jun; 4():20. PubMed ID: 19505305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. touché Is required for touch-evoked generator potentials within vertebrate sensory neurons.
    Low SE; Ryan J; Sprague SM; Hirata H; Cui WW; Zhou W; Hume RI; Kuwada JY; Saint-Amant L
    J Neurosci; 2010 Jul; 30(28):9359-67. PubMed ID: 20631165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent ion channels in CAD cells: A catecholaminergic neuronal line that exhibits inducible differentiation.
    Wang H; Oxford GS
    J Neurophysiol; 2000 Dec; 84(6):2888-95. PubMed ID: 11110818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture.
    Nuss HB; Marban E
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):265-79. PubMed ID: 7799226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.
    Kuenzel T; Wirth MJ; Luksch H; Wagner H; Mey J
    Brain Res; 2009 Dec; 1302():64-75. PubMed ID: 19766604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons.
    Blair NT; Bean BP
    J Neurosci; 2002 Dec; 22(23):10277-90. PubMed ID: 12451128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons.
    Birinyi-Strachan LC; Gunning SJ; Lewis RJ; Nicholson GM
    Toxicol Appl Pharmacol; 2005 Apr; 204(2):175-86. PubMed ID: 15808523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory neuron sodium current requires nongenomic actions of thyroid hormone during development.
    Yonkers MA; Ribera AB
    J Neurophysiol; 2008 Nov; 100(5):2719-25. PubMed ID: 18799597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha-SNS produces the slow TTX-resistant sodium current in large cutaneous afferent DRG neurons.
    Renganathan M; Cummins TR; Hormuzdiar WN; Waxman SG
    J Neurophysiol; 2000 Aug; 84(2):710-8. PubMed ID: 10938298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.